
• Flushing is shiny, black surface film of asphalt on the road surface 

caused by upward movement of asphalt on the pavement surface.

• This condition reduces skid resistance, especially in wet weather, and 

compromises pavement safety and performance.

• Current detection methods include: 

     - Manual visual inspections – time-consuming and labor-intensive

     - Automated image-based detection – may yield inconsistent results.

• There is a lack of standardized and scalable methods for flushing 

detection and prediction.

• A need exists for a more consistent, data-driven flushing evaluation 

and prediction method.

• Integrating pavement texture measurements and traffic characteristics 

can offer a more objective, consistent, and efficient solution.
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Introduction

Objectives

Methodology

Dataset Description

• Data sourced from TxDOT PMIS, collected annually via automated 

methods.

• The San Antonio district was selected as a study site for flushing 

distress check.

• 666 road sections analyzed manually for flushing severity.

• Dataset include: 

➢ Mean Profile Depth (MPD): Minimum, maximum, mean, standard 

deviation, distribution, 

➢ Average Annual Daily Traffic  per lane (AADT), 

➢ Equivalent Single Axle Loads per lane (ESAL), 

➢ Geographical information of Counties. 

Results & Discussion

Conclusions

• Flushing severity is strongly influenced by MPDMean , Pavement Type, and County.

• The developed predictive models successfully replicate manual flushing ratings, with 

the highest performance for “None” and “High” severity levels.

• XGBoost gives the highest accuracy among all the models for the study dataset.

• Prediction accuracy for 'Low' and 'Medium' flushing levels is limited due to data 

scarcity; more balanced data would be needed to improve model performance.

Figure 1. Example of road flushing (Highway ID: FM0020K)
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• Manually assess pavement surface images of selected roadway 

sections in Texas utilizing the right-of-way view.

• Establish ground truth flushing ratings referring to the TxDOT rater’s 

manual through visual interpretation.

• Incorporate pavement surface texture metrics, specifically Mean Profile 

Depth (MPD), along with traffic data, to construct a comprehensive 

dataset for flushing analysis.

• Develop a robust predictive model capable of replicating manual 

flushing ratings with high accuracy and consistency.

• Developed a predictive modeling framework to classify pavement sections into 

various categories of flushing (example: None, Low, Medium, and High).

•   Implemented and compared the following models:

     a) Multiple Linear Regression b) Ordered Data Discrete Choice 

     c) Extreme Gradient Boosting                 d) Neural Network

•  The dataset was randomly split into: 80% for training and 20% for testing.

➢ Model implementation

a) Multiple Linear Regression

• To establish an interpretable relationship between flushing levels (%) and various 

predictor variables derived from surface texture characteristics, traffic, and related 

pavement information.

Flushing = β0 + β₁·MPDMean + β₂·ESAL/lane + β₃·AADT/lane + β4·Latitude + 

β5·LatitudeDeviate + β6·Pavement Type (Seal coat) + β7·County_Atascosa + 

β8·County_Bandera + β9·County_Bexar + β10·County_Comal +  β11·County_Frio +  

β12·County_Guadalupe +  β13·County_Kendall +  β14·County_Kerr + ε 

b) Ordered Data Discrete Choice Model 

• Investigate flushing severity categories using the DCM-based ordered model.

• Estimates cumulative probability of flushing 

    at or below a given severity level (Figure 2).

• Model:  𝑦∗ =  𝑥′𝛽 + ε

    𝑦∗ is a hidden preference among flushing class;

     𝑥′ is explanatory variables set; 

    𝛽 is strength of each explanatory variable;ε is error.

• The flushing probabilities 𝑓(𝜖) are:
     𝑃𝑟𝑜𝑏 𝑦 = 𝑁𝑜𝑛𝑒 𝑥 =  Φ(−𝑥′𝛽)
 𝑃𝑟𝑜𝑏 𝑦 = 𝐿𝑜𝑤 𝑥 =  Φ(𝜇1 − 𝑥′𝛽) – Φ(−𝑥′𝛽) 
     𝑃𝑟𝑜𝑏 𝑦 = 𝑀𝑒𝑑𝑖𝑢𝑚 𝑥 =  Φ(𝜇2 − 𝑥′𝛽) – Φ(𝜇1 − 𝑥′𝛽) 
 𝑃𝑟𝑜𝑏 𝑦 = 𝐻𝑖𝑔ℎ 𝑥 = 1 − Φ(𝜇3 − 𝑥′𝛽) – Φ(𝜇2 − 𝑥′𝛽) 

c) Extreme Gradient Boosting (XGBoost)
• XGBoost was used to capture complex non-linear relationships beyond the 

limitations of the regression and discrete choice models.

• Target variable: Flushing severity (categories)
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• The predicted value is updated iteratively as: ො𝑦𝑖
𝑡

=  ො𝑦𝑖
𝑡−1

+ 𝑓𝑡(𝑥𝑖)                    

     where (𝑥𝑖) represents the input features.

d) Neural Network Model

• A Multilayer Perceptron model was developed to classify flushing severity and 

the model architecture is shown in Figure 3.

• Input layer: MPDMean, ESAL/lane, AADT/lane, MPD distribution, Latitude, 

LatitudeDeviate, Pavement type, and County.

• Hidden layer: Captures complex, non-linear relationships; size tuned via cross-

validation.

• Output layer: Uses the softmax function to predict probabilities for each class.

Class None Low Medium High

None 263 0 1 1

Low 0 10 0 0

Medium 0 0 19 0

High 2 0 0 236

Class None Low Medium High

None 63 1 2 4

Low 0 0 0 0

Medium 0 0 0 1

High 5 0 4 54

b) Ordered Data Discrete Choice Model
• MPDMean , Pavement Type, and Counties have a significant influence on flushing.

• Training accuracy: 77.52% and testing accuracy: 77.27%.

(a) (b)

Table 2. Confusion matrix of  XGBoost model: (a) Training and (b) Testing

a) Multiple Linear Regression
• Flushing distress significantly varies by Pavement type (with seal coat) and 

County locations.

• Texture features like MPDMean show a significant trend suggesting potential 

influence on flushing. 

Figure 3.  Architecture of Neural Network 

d) Neural Network Model
• Training accuracy: 87.27% and testing accuracy: 73.48%

• Strong performance for “None” and “High” flushing levels.

Class None Low Medium High

None 235 6 10 7

Low 0 0 0 0

Medium 0 0 1 0

High 32 3 10 230

Class None Low Medium High

None 45 1 0 4

Low 1 0 0 3

Medium 0 0 0 0

High 20 1 5 52

Table 3. Confusion matrix of Neural network model: (a) Training and (b) Testing
(a) (b)

c) XGBoost
• Training accuracy: 99.20% and testing accuracy: 87.31%.

• Strong classification: "None" and "High" flushing levels“. “Low” and “Medium" levels 

were not predicted since these levels are rare in the dataset.

Variables Estimate Std Error t-value

MPDMean -0.83 0.18 -4.59

ESAL/lane 0.00 0.00 0.72

AADT/lane 0.00 0.00 -0.53

Latitude 1.44 0.01 123.41

Latitude Deviate -6.91 0.07 -92.15

Pavement Type 0.49 0.22 2.24

Atascosa -18.83 0.24 -79.52

Variables Estimate Std Error t-value

Bandera -20.87 0.06 -358.17

Bexar -17.62 0.02 -1081.39

Comal -22.09 0.23 -97.21

Frio -18.87 0.06 -301.15

Guadalupe -20.18 0.27 -74.20

Kendall -19.51 0.11 -181.94

Kerr -17.96 0.21 -83.70

Table 1. Ordered data discrete choice model results

Figure 2. Probabilities in model
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