

Quantification and Prediction of Pavement Flushing Using Surveying, Texture, and Traffic Data

Introduction

- Flushing is shiny, black surface film of asphalt on the road surface caused by upward movement of asphalt on the pavement surface.
- This condition reduces skid resistance, especially in wet weather, and compromises pavement safety and performance.
- Current detection methods include:
 - Manual visual inspections time-consuming and labor-intensive - Automated image-based detection – may yield inconsistent results.
- There is a lack of standardized and scalable methods for flushing detection and prediction.
- A need exists for a more consistent, data-driven flushing evaluation and prediction method.
- Integrating pavement texture measurements and traffic characteristics can offer a more objective, consistent, and efficient solution.

Figure 1. Example of road flushing (Highway ID: FM0020K)

Objectives

- Manually assess pavement surface images of selected roadway sections in Texas utilizing the right-of-way view.
- Establish ground truth flushing ratings referring to the TxDOT rater's manual through visual interpretation.
- Incorporate pavement surface texture metrics, specifically Mean Profile Depth (MPD), along with traffic data, to construct a comprehensive dataset for flushing analysis.
- Develop a robust predictive model capable of replicating manual flushing ratings with high accuracy and consistency.

Dataset Description

- Data sourced from TxDOT PMIS, collected annually via automated methods.
- The San Antonio district was selected as a study site for flushing distress check.
- 666 road sections analyzed manually for flushing severity.
- Dataset include:
- > Mean Profile Depth (MPD): Minimum, maximum, mean, standard deviation, distribution,
- > Average Annual Daily Traffic per lane (AADT),
- \succ Equivalent Single Axle Loads per lane (ESAL),
- Geographical information of Counties.

Gauri Mahajan, Sadia Bhuiyan Shampa, Feng Hong, Xiaohua Luo, Feng Wang Ingram School of Engineering, Texas State University, San Marcos, Texas

Methodology

- Developed a predictive modeling framework to classify pavement sections into various categories of flushing (example: None, Low, Medium, and High).
- Implemented and compared the following models: a) Multiple Linear Regression c) Extreme Gradient Boosting
- The dataset was randomly split into: 80% for training and 20% for testing.

> Model implementation

a) Multiple Linear Regression

• To establish an interpretable relationship between flushing levels (%) and various predictor variables derived from surface texture characteristics, traffic, and related pavement information.

Flushing = β_0 + $\beta_1 \cdot MPD_{Mean}$ + $\beta_2 \cdot ESAL/lane$ + $\beta_3 \cdot AADT/lane$ + $\beta_4 \cdot Latitude$ + β_5 ·LatitudeDeviate + β_6 ·Pavement Type (Seal coat) + β_7 ·County_Atascosa + β_{8} ·County_Bandera + β_{9} ·County_Bexar + β_{10} ·County_Comal + β_{11} ·County_Frio + β_{12} ·County_Guadalupe + β_{13} ·County_Kendall + β_{14} ·County_Kerr + ε

b) Ordered Data Discrete Choice Model

- Investigate flushing severity categories using the DCM-based ordered model.
- Estimates cumulative probability of flushing at or below a given severity level (Figure 2). Model: $y^* = x'\beta + \varepsilon$ y^* is a hidden preference among flushing class;
- x' is explanatory variables set; β is strength of each explanatory variable; ϵ is error.
- The flushing probabilities $f(\epsilon)$ are: $Prob(y = None|x) = \Phi(-x'\beta)$ $Prob(y = Low|x) = \Phi(\mu_1 - x'\beta) - \Phi(-x'\beta)$
- $Prob(y = Medium|x) = \Phi(\mu_2 x'\beta) \Phi(\mu_1 x'\beta)$ $Prob(y = High|x) = 1 - \Phi(\mu_3 - x'\beta) - \Phi(\mu_2 - x'\beta)$

c) Extreme Gradient Boosting (XGBoost)

- XGBoost was used to capture complex non-linear relationships beyond the limitations of the regression and discrete choice models.
- Target variable: Flushing severity (categories) Objective function: $L(\phi) = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{k=1}^{t} \Omega(f_k)$,
- Regularization term: $\Omega(f) = \Upsilon T + \frac{1}{2}\lambda ||w||^2$
- The predicted value is updated iteratively as: $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$ where (x_i) represents the input features.

d) Neural Network Model

- A Multilayer Perceptron model was developed to classify flushing severity and the model architecture is shown in Figure 3.
- Input layer. MPD_{Mean}, ESAL/lane, AADT/lane, MPD distribution, Latitude, LatitudeDeviate, Pavement type, and County.
- Hidden layer. Captures complex, non-linear relationships; size tuned via crossvalidation.
- Output layer. Uses the softmax function to predict probabilities for each class.

Results & Discussion

a) Multiple Linear Regression

- Flushing distress significantly varies by Pavement type (with seal coat) and County locations.
- Texture features like MPD_{Mean} show a significant trend suggesting potential influence on flushing.

b) Ordered Data Discrete Choice d) Neural Network

Figure 2. Probabilities in model

Latitude (Latitude Deviate Pavement Type County

Input layer

b) Ordered Data Discrete Choice Model

- Training accuracy: 77.52% and testing accuracy: 77.27%.

Variables	Estimate	Std Error	t-value	Variables	Estimate	Std Error	t-value
MPD _{Mean}	-0.83	0.18	-4.59	Bandera	-20.87	0.06	-358.17
ESAL/lane	0.00	0.00	0.72	Bexar	-17.62	0.02	-1081.39
AADT/lane	0.00	0.00	-0.53	Comal	-22.09	0.23	-97.21
Latitude	1.44	0.01	123.41	Frio	-18.87	0.06	-301.15
Latitude Deviate	-6.91	0.07	-92.15	Guadalupe	-20.18	0.27	-74.20
Pavement Type	0.49	0.22	2.24	Kendall	-19.51	0.11	-181.94
Atascosa	-18.83	0.24	-79.52	Kerr	-17.96	0.21	-83.70

c) XGBoost

- Training accuracy: 99.20% and testing accuracy: 87.31%.
- were not predicted since these levels are rare in the dataset.

(a)

Class	None	Low	Medium	High
None	263	0	1	1
Low	0	10	0	0
Medium	0	0	19	0
High	2	0	0	236

d) Neural Network Model

- Training accuracy: 87.27% and testing accuracy: 73.48%
- Strong performance for "None" and "High" flushing levels.

1	``
10	`
	1)
	~ /

Class	None	Low	Medium	High	Class	None	Low	Medium	High
None	235	6	10	7	None	45	1	0	4
Low	0	0	0	0	Low	1	0	0	3
Medium	0	0	1	0	Medium	0	0	0	0
High	32	3	10	230	High	20	1	5	52

Conclusions

• Flushing severity is strongly influenced by MPD_{Mean}, Pavement Type, and County. • The developed predictive models successfully replicate manual flushing ratings, with

- the highest performance for "None" and "High" severity levels.

Acknowledgements

- (TxDOT) Project 0-7211.

Output layer Hidden layer Figure 3. Architecture of Neural Network

• *MPD_{Mean}* Pavement Type, and Counties have a significant influence on flushing.

Table 1. Ordered data discrete choice model results

Strong classification: "None" and "High" flushing levels". "Low" and "Medium" levels

Table 2. Confusion matrix of XGBoost model: (a) Training and (b) Testing

(b)

С	lass	None	Low	Medium	High
N	lone	63	1	2	4
L	_OW	0	0	0	0
Me	edium	0	0	0	1
ŀ	ligh	5	0	4	54

Table 3. Confusion matrix of Neural network model: (a) Training and (b) Testing

• XGBoost gives the highest accuracy among all the models for the study dataset.

• Prediction accuracy for 'Low' and 'Medium' flushing levels is limited due to data scarcity; more balanced data would be needed to improve model performance.

• The research study is supported by the Texas Department of Transportation

• Texas State University: R2R1 Doctoral Research Assistantship, Department of Materials Science, Engineering, and Commercialization, College of Science and Engineering, The Graduate College, and The Rising STAR Travel Grant.