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In this research, Generative Al (Artificial Intelligence) models such 1. Data collection
as Ground DINO and Florence 2 are developed in the mission of _
automated pavement distress detection with 2D/3D image data, ,1 3 Table 3. Overall performance of ditferent models
and computer vision techniques are applied for the quantification == % ' | , PR e e ----
. ] == ‘; elineate the crack Model name 3D or fused : mAPS0 | Precision | Recall
of pavement cracks. In this cascaded workflow, the Generative Al ~N ., \ y N augmentation
models are compared with different pavement distress detection - A8 | ‘ _ RT DETR - yes Ayepe e Yy
models and developed with the dataset collected and annotated " . RT _DETR fused yes 0.558 0.604 0.553
= | A - g (c) An overlaid image for the crack
by the research team. After the surface defects are detected, a ~F A | S . 1, segmentation from a segmentation model. N YOLOV12 fused yes 0.546 0.610 0.526
technique using the Structured Forest edge extraction method is S (g oA e : . YOLO World fused yes 0.511 0570 0516
proposed to delineate the shape of the cracks and then measure B W ' o | Grounding-DINO fused yes 0.515 0522  0.504
the crack geo-information (widths, lengths, and area) at the —\ » s y Florence 2 3D yes 0.301 0.400  0.440
distress locations. Finally, weighted cracking widths, lengths, and 1 el | . | Florence 2 fused yes 0.263 0.450  0.360
areas are applied to calculate the distress severity levels or () A resized and cropped image to represent a crac i
distress scores to follow the protocols of distress identification detected by one Generative Al model.
guidelines and pavement management standards specified by the | Use the proposed method to__
U.S. and state DOTs. This two-step workflow with the Generative | delineate the crack
Al and image processing techniques will provide an automated | | r | A
pipeline to process the field collected pavement image data and : ' : f s oal

assess the CraCking condition of the pavement su rface with cost- 4 ‘ : ' (b) An overlaid image for the crack segmentation with the proposed method. e o
effectiveness. | 3 : Figure 8 Crack measurements with a cropped image. (a) Is the image detected with a piece

of crack after resizing and cropping. (b) Is the overlaid image of crack segmentation with | | . il
Structured Forest edge detection method. (c) is the result of using a crack segmentation i U pOREM

4. Performance of traditional and Generative Al models with

Step 3: Crack measurements
fused 2D/3D images

5. An example of crack measurements

(a) An Illustration of pavement distress scanning vehicle (c) Two front laser camera

. ] : ; ] (d) Width and length for the crack segments.
Figure 3 2D/3D laser pavement distress scanning vehicle and its sensors.
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Introduction (a) 2D (intensity) image (b) 3D (range) image (c) Fused 2D/3D image neural network. (d) is the width and length information for each crack segment. |
Figure 4 An example of 2D, 3D, and fused images for the collected data.
1. Traditional and open-vocabulary object detection 2. Cascaded workflow :
User User 1) Pavement distress detection with Generative Al models.
;-4 - e o 2) Crack segmentation with the Structured Forest edge detection method. 1) e ks
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2. Models used for pavement distress detection Transverse crack |——— 10403
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Images are the input. Intrascale feature interaction (AIFl) and cross. for pavement crack measurements. Figure 9 Distribution of dlfferz“ru\:SACP pavement distresses for the original training dataset.

scale feature-fusion module (CCFM) are the encoder. loU-aware Step 1: Data preparation Aligtrcrac
query is used for image feature selection. The decoder generating Lorgiudia | .
boxes and confidence scores .

Sealed_longitudinal crack
2) YOLOvV12
YOLOvV12 is an attention-centric variant of the YOLO (You Only Look

Figure 11 An illustration of measuring cracks detected by the Grounding
DINO model. (a) is the predicted cracks from the model. (b) to (d) are the
length and width of each crack branch (segment). The measurements have
the same colors as the branch skeletons of cracks on the overlaid images.
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detection, but traditional deep learning methods like RT-DETR can
compete with them.
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Labels) can utilize a feature enhancer, a language-guided query | N 0517 ~ 0254 0296 0567 0516  0.53 2) An imbalance problem for some types of pavement distresses
selection and a modality fusion with a cross-modality decoder. Joint 0204 0669 0421 082 0815 0.847 in the training dataset affects all the models. It is still insufficient
5) Florence 2: g — Longitudinal crack 0325 0283 0197 0539 0481 0459 after using data augmentation techniques to increase the dataset.
. Epm————-_ Longitudinal Sealed longitudinal
ronsiorse i Y S 0.257 0.349 0.245 0.657 0.573 0.589 : :

The sermantic eranularity at three stages forms a comprehensive e crack 3) Structured Forest edge detection on the crack segmentation

. S Y S . P - works well for the proposed framework, but there are cases that
annotatlon module named FLD_SB. Florence_z IS a unlfled Transverse Lane |0ng|tUd|nal crack 0.258 0.289 0.145 0.588 0.551 0.518 4

f il X
i ) f 3 Transverse
B [ -

e T T e T o oo T this method fails to capture the edges of thin or fading cracks.

0.0991 0.0118 0.0603 0.614 0.509 0.538

Block crack
Alligator crack

architecture based on FLD-5B. Figure 6 Four examples of pavement distress labeled by us for Asphalt Concrete

Semantic 4) Crack measurements need to be verified with established data
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