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Abstract

In this research, Generative AI (Artificial Intelligence) models such 
as Ground DINO and Florence 2 are developed in the mission of 
automated pavement distress detection with 2D/3D image data, 
and computer vision techniques are applied for the quantification 
of pavement cracks. In this cascaded workflow, the Generative AI 
models are compared with different pavement distress detection 
models and developed with the dataset collected and annotated 
by the research team. After the surface defects are detected, a 
technique using the Structured Forest edge extraction method is 
proposed to delineate the shape of the cracks and then measure 
the crack geo-information (widths, lengths, and area) at the 
distress locations. Finally, weighted cracking widths, lengths, and 
areas are applied to calculate the distress severity levels or 
distress scores to follow the protocols of distress identification 
guidelines and pavement management standards specified by the 
U.S. and state DOTs. This two-step workflow with the Generative 
AI and image processing techniques will provide an automated 
pipeline to process the field collected pavement image data and 
assess the cracking condition of the pavement surface with cost-
effectiveness. 

1. Traditional and open-vocabulary object detection 

Introduction

Methodology

1. Data preprocessing and augmentation

Results

Several findings are observed through this research:

1) Generative AI models can be used for pavement distress 
detection, but traditional deep learning methods like RT-DETR can 
compete with them.

2) An imbalance problem for some types of pavement distresses 
in the training dataset affects all the models. It is still insufficient 
after using data augmentation techniques to increase the dataset.

3) Structured Forest edge detection on the crack segmentation 
works well for the proposed framework, but there are cases that 
this method fails to capture the edges of thin or fading cracks. 

4) Crack measurements need to be verified with established data 
libraries and provide statistical results for evaluation.

5) In the future, segmentation networks will be applied on crack 
delineation to get more accurate crack segmentation on ACP. 

6) Crack qualification on JCP and CRCP will be the next research. 

Conclusions

This research is part of the project  “using artificial intelligence to 
improve the accuracy of automated pavement condition data 
collection” , funded by the U.S. National Science Foundation (grant 
No. 2213694).

This research is also sponsored by Texas Department of 
Transportation (project No. 0-7150).

Acknowledgements

Figure 5 Flowchart of using Generative AI models and Structured Forest edge detection 

for pavement crack measurements.
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2. Models used for pavement distress detection

1) Real-Time Detection Transformer (RT-DETR)

Images are the input. Intrascale feature interaction (AIFI) and cross-
scale feature-fusion module (CCFM) are the encoder. IoU-aware 
query is used for image feature selection. The decoder generating 
boxes and confidence scores .

2) YOLOv12

YOLOv12 is an attention-centric variant of the YOLO (You Only Look 
Once) family.

3) YOLO World

Text and the input image are encoded with YOLO backbone.

4) Grounding-DINO

With ground pre-training, the Grounding DINO (Distillation with No 
Labels) can utilize a feature enhancer, a language-guided query 
selection and a modality fusion with a cross-modality decoder.

5) Florence 2:

The semantic granularity at three stages forms a comprehensive 
annotation module named FLD-5B. Florence-2 is a unified 
architecture based on FLD-5B.

Figure 1 Fixed-vocabulary (a) and open-vocabulary (b) detection.

1. Data collection

Figure 2. An illustration of Florence 2 enabling semantic granularity and 

spatial hierarchy as a vision foundation model.

Step 1: Data preparation

Figure 6 Four examples of pavement distress labeled by us for Asphalt Concrete 

Pavement (ACP).

Step 2: Distress detection and cropped with Generative AI models

Figure 7 Generative AI models (vision-language models) for pavement distress detection.

Step 3: Crack measurements

Figure 8 Crack measurements with a cropped image. (a) is the image detected with a piece 

of crack after resizing and cropping. (b) is the overlaid image of crack segmentation with 

Structured Forest edge detection method. (c) is the result of using a crack segmentation 

neural network. (d) is the width and length information for each crack segment.

Figure 9 Distribution of different ACP pavement distresses for the original training dataset.

10409

726

1180

4964

807

1300

567

701

452

0 2000 4000 6000 8000 10000 12000

Transverse crack

Sealed transverse crack

Joint

Longitudinal crack

Sealed_longitudinal crack

Lane_longitudinal crack

Block crack

Alligator crack

Failures

25124

1766

3357

11370

1992

3061

1512

1700

939

0 10000 20000 30000

Transverse crack

Sealed transverse crack

Joint

Longitudinal crack

Sealed_longitudinal crack

Lane_longitudinal crack

Block crack

Alligator crack

Failures

Figure 10 Distribution of different ACP pavement distresses for the tiled training dataset.

5. An example of crack measurements

Figure 11 An illustration of measuring cracks detected by the Grounding 

DINO model. (a) is the predicted cracks from the model. (b) to (d) are the 

length and width of each crack branch (segment). The measurements have 

the same colors as the branch skeletons of cracks on the overlaid images. 

2. Model performance with and without data augmentation

Class name

Without tiling With tiling

Precision Recall mAP50 Precision Recall mAP50

Transverse crack 0.344 0.482 0.354 0.663 0.602 0.632

Sealed transverse 

crack
0.517 0.254 0.296 0.567 0.516 0.53

Joint 0.204 0.669 0.421 0.82 0.815 0.847

Longitudinal crack 0.325 0.253 0.197 0.539 0.481 0.459

Sealed longitudinal 

crack
0.257 0.349 0.245 0.657 0.573 0.589

Lane longitudinal crack 0.258 0.289 0.145 0.588 0.551 0.518

Block crack 0.0486 0.0339 0.0184 0.371 0.285 0.249

Alligator crack 0.0991 0.0118 0.0603 0.614 0.509 0.538

Failures 0.376 0.268 0.289 0.621 0.651 0.663

Overall performance 0.27 0.29 0.225 0.604 0.553 0.558

3. Model performance with 3D and 2D/3D fused images

Table 1. Results for RT-DETR model trained by fused images with and without tiling

Table 2. Results for RT-DETR model trained by tiled 3D and fused 2D/3D images

Class name

3D only Fused 2D/3D

Precision Recall mAP50 Precision Recall mAP50

Transverse crack 0.647 0.615 0.641 0.663 0.602 0.632

Sealed transverse crack 0.568 0.54 0.506 0.567 0.516 0.53

Joint 0.824 0.821 0.859 0.82 0.815 0.847

Longitudinal crack 0.544 0.488 0.485 0.539 0.481 0.459

Sealed longitudinal 

crack
0.622 0.541 0.582 0.657 0.573 0.589

Lane longitudinal crack 0.556 0.514 0.478 0.588 0.551 0.518

Block crack 0.355 0.259 0.225 0.371 0.285 0.249

Alligator crack 0.584 0.463 0.507 0.614 0.509 0.538

Failures 0.514 0.687 0.624 0.621 0.651 0.663

Overall performance 0.579 0.548 0.545 0.604 0.553 0.558

4. Performance of traditional and Generative AI models with 
fused 2D/3D images

Table 3. Overall performance of different models

Model name 3D or fused
Data 

augmentation
mAP50 Precision Recall

RT_DETR 3D yes 0.545 0.579 0.548

RT_DETR fused yes 0.558 0.604 0.553

YOLOv12 fused yes 0.546 0.610 0.526

YOLO World fused yes 0.511 0.570 0.516

Grounding-DINO fused yes 0.515 0.522 0.504

Florence 2 3D yes 0.301 0.400 0.440

Florence 2 fused yes 0.263 0.450 0.360

2. Cascaded workflow

1) Pavement distress detection with Generative AI models.
2) Crack segmentation with the Structured Forest edge detection method. 

Figure 3 2D/3D laser pavement distress scanning vehicle and its sensors.

Figure 4 An example of 2D, 3D, and fused images for the collected data.

(a) (b)

(b) Rear laser camera

(a) An Illustration of pavement distress scanning vehicle (c) Two front laser camera

(a) 2D (intensity) image                       (b) 3D (range) image                       (c) Fused 2D/3D image            
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