

ESTABLISHING FRICTION AND MACROTEXTURE INVESTIGATORY THRESHOLDS

BORIS GOENAGA, NCSU POSTDOCTORAL RESEARCH SCHOLAR

OUTLINE

- Acknowledgements
- Research Background
- Data
- Friction and Macrotexture Performance
- Safety Performance

Conclusions

ACKNOWLEDGEMENTS

NCSU

- Dr. Shane Underwood Professor
- Dr. Cassie Castorena Professor
- Paul Rogers Principal, KPR Engineering

- Joseph Barbour, M&T
- Shawn Troy, STU
- Matt Hildebran, M&T
- Andrew Wargo, M&T
- Matthew York, Hydraulics

ACKNOWLEDGEMENTS

NCSU

- Dr. Shane Underwood Professor
- Dr. Cassie Castorena Professor
- Paul Rogers Principal, KPR Engineering

NCDOT

- Joseph Barbour, M&T
- Shawn Troy, STU
- Matt Hildebran, M&T
- Andrew Wargo, M&T
- Matthew York, Hydraulics

DISCLAIMER

This presentation represents the opinions of the author and is not meant to represent the position or opinions of the NCDOT or its employees.

RESEARCH BACKGROUND

Internal studies on targeted sites (2017-current)

- RP2017-02 Evaluation of Methods for Pavement Surface Friction, Testing on Non-tangent Roadways and Segments (Completed, VT)
- RP2020-11 Evolution of Pavement Friction and Macrotexture after Asphalt Overlay (Completed)
- RP2022-05 Development of Friction Performance Models (Completed)
- RP2024-12 Evaluation of Macrotexture and Friction of Alternative Asphalt Surface Course Material (Completed)
- Network Data Collection (2022, 2023, 2024)
- RP2025-18 Updating Friction/Texture Demand Categories for Improved Pavement Design Guidance (Ongoing)

RESEARCH BACKGROUND

SKID RESISTANCE RELATIONSHIP WITH HIGHWAY SAFETY

RPUG Road Profile Users' Group

RESEARCH BACKGROUND

Characterize the typical range of friction and macrotexture observed in North Carolina by pavement type and traffic levels.

Characterize friction and macrotexture performance models.

Develop friction and macrotexture performance investigatory thresholds.

DATA

Core Acquisition and Lab Measurements

Continuous Friction Measurement Equipment

Lane Departure, Wet-Crashes

- 11 13 14 8 RP2020-11 and RP2022-05 RP2024-12 (North Carolina) * OGFC Double Chip Seal with Fog Seal S9.5B HFST S9.5C Microsurfacing S9.5D OGFC * UTBWC UTBWC
- Group 1 sites for short term monitoring
- Group 2 sites for long-term monitoring
- Group 3 sites for special surface
- Group 4 sites from Network data collection

DATA FRICTION AND MACROTEXTURE MEASUREMENT DEVICES

Device	BV-11	AMES AccuTexture 100	
Speed	60-mph (96 km/h)	Posted speed limit	
Location	 RWP Center of the lane	 RWP Center of the lane	
Frequency	3 m (10 ft)	3 m (10 ft)	

DATA **OBSERVED MACROTEXTURE VALUES**

file Users' Group

DATA OBSERVED BV-11 FRICTION VALUES

Profile Users' Group

FRICTION AND MACROTEXTURE PERFORMANCE Seasonal effects were modeled

FRICTION MODELS

Seasonal effects were modeled separately and are not shown in the schematic. Seasonality was removed from the data.

With these parameters, the model indicates that: Average traffic needed to reach FN_{max} is 34.9 million repetitions.

- Average FN_{max} is 0.63
- Regional differences were not evident in RP2020-11 and RP2022-5.

FRICTION AND MACROTEXTURE PERFORMANCE

MACROTEXTURE MODELS

SAFETY PERFORMANCE METRICS - TOTAL CRASHES

Crashes/mile moving average for three different time windows.

 The 13-month and 19-month windows, on average, produce similar standard deviations.

A 13-moving window was selected.

SAFETY PERFORMANCE

METRIC CALCULATION

Crashes were computed in a 13month window centered around the measurement date.

➡ For sites tested at their late service life, performance models were used to 'back-cast' friction and macrotexture values to increase the sample size.

SAFETY PERFORMANCE

METRICS – LANE WET DEPARTURE CRASHES

Once the crashes were paired with their respective friction and macrotexture value, crash rates were computed.

For the analysis, lane wet departure crashes were used.

SAFETY PERFORMANCE

APPLICATION TO REFINE PERFORMANCE THRESHOLDS – HIGH SPEED FACILITIES

Final Proposed Friction Thresholds

Variable	Non- Interchanges	Interchanges	
FN INV	0.57	0.65	
FN INT	0.43	0.49	

Note: $FN_{INT} = 0.75^*FN_{INV}$

Final Proposed Texture Thresholds

Variable	Non- Interchanges	Interchanges		
MPD _{INV}	0.80	0.80		
MPD _{INT}	0.60	0.60		
Note: $MPD_{INT} = 0.75^* MPD_{INV}$				

	Abbreviation	Meaning	Crashes,
	FN INV	Investigatory friction threshold	were ago
	FN _{INT}	Intervention friction threshold	histogran
- 65	MPD _{INV}	Investigatory MPD threshold	
OUD	MPDINT	Intervention MPD threshold	

- Crashes, traffic, and length were aggregated using the histogram bins.
- **\square** R_B was computed for each bin.

CONCLUSIONS

- Friction exhibits a two-step variation. On average, the transition between these two phases occurs at 34.6 million traffic repetitions.
 - Dense-graded surfaces have slightly lower friction than OGFCs and UTBWCs.
 - The OGFCs and UTBWCs have similar initial friction, but the friction of UTBCs decays faster.
- □ Macrotexture increases with respect to traffic repetitions.
 - Dense-graded surfaces have the lowest macrotexture.
 - UTBWCs have higher MPD values than OGFCs; however, the MPD of OGFC increases faster.
- For non-interchanges, investigatory thresholds of 0.57 and 0.80 mm are proposed for friction and macrotexture, respectively.

THANK YOU

Link to Folder Containing Project Reports

