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• Clas s ifying s lab s ta tes  bas ed on cracking patterns , s uch as  longitudinal, trans vers e, corner 
cracking, or a  combination of thes e (i.e., s hattered), is  critical for determining the condition of 
J ointed Plain Concrete Pavements  (J PCP).

J PCP Slab State Clas s ification

Figures captured from the LTPP manual: Miller, J. S., & Bellinger, W. Y. (2003). Distress identification manual for the long-term pavement performance program. 



Availability of Pavement Images  and Crack Maps

(a) Intensity Image (b) Range Image (c) Crack Maps

• With the availability of crack maps  derived from high-res olution 3D pavement s urface images , 
there is  a  s ignificant opportunity to automate the clas s ification of J PCP s lab s ta tes  bas ed on 
cracking.

D
riving direction

Data was collected by the Georgia Tech Sensing Vehicle (GTSV) on I-16 Westbound (MP 22 to 12) in Georgia. This JPCP is designed with a skew.



• An LTPP revis ed s lab-clas s ification has  been propos ed and us ed to categorize 
typical J PCP cracking deterioration, which can as s is t in monitoring and treatment 
decis ion-making (Geary, 2019).

J PCP Slab State Clas s ification: New Definitions

Slab State Definition Based on Cracking Pattern (Geary, 2019)

L1 L2 CCT2 SST1
Sample Slab States  (Geary, 2019; Salameh, 2025)

• This  J PCP s lab clas s ification is  being incorporated into NCHRP 01-57B.
• There is  a  need for an automated J PCP s lab clas s ification method.

Geary, G. M. (2019). A spatial and temporal 3D slab-based methodology for optimized concrete pavement asset management.
Salameh, R. (2025). Optimizing Project-level Pavement Asset Management: Predictive and Precision-based Maintenance with 3D Pavement Surface Data. 



Previous  Work: DL-based J PCP Slab Clas s ification

Can we use crack maps to classify slabs?

• A DL-bas ed model was  developed to conduct end-to-end J PCP s lab clas s ification; 
however, this  method is  difficult to interpret and implement (Hs ieh et a l., 2021).

Hsieh, Y. A., Yang, Z., & James Tsai, Y. C. (2021). Convolutional neural network for automated classification of jointed plain concrete pavement conditions. Computer‐Aided Civil and Infrastructure Engineering, 36(11), 1382-1397. 

* The accuracy of this DL-based model is around 85%。



2) HPMS Reporting
E.g., % Wheelpath fatigue cracking 

for flexible pavements

3) State Agencies ’ Protocols
SHA’s  dis tres s  protocol and 

treatment decis ion-trees

4) Cracking Data Quality 
Asses sment Us ing Crack Maps
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The Crack Vector Model (CVM) is a method that implements the concept of 
Crack Fundamental Elements (CFEs), proposed by Dr. Tsai in 2014 (Tsai et 
al., 2014). This method was also introduced for developing a standardized 
cracking definition in NCHRP Project 01-57B.

Crack Vector Model 
(CVM)

Detected Crack Maps 
(Different vendors have 

different methods)

Range Image

1) Higher Level Cracking 
Definitions  (Grid-based)

* The new cracking definitions using CVM 
are expected to be fundamental and flexible 
enough to support different applications.

Representing Crack Maps  Us ing Crack Vector Model (CVM)

Tsai, Y.-C., Jiang, C., & Huang, Y. (2014). Multiscale crack fundamental element model for real-world pavement crack classification. Journal of Computing in Civil Engineering, 28(4), 04014012. 



• Core ideas  of the CFE concept:
1. Us ing fundamental geometry elements , like node and link, to repres ent crack geometry.
2. Flexible enough to s upport different cracking definitions  and protocols .
3. Similar to roadway networks ; exis ting GIS knowledge is  leveraged.

•  The Crack Vector Model (CVM) is  then developed to implement the concept of 
the CFE (Yang, 2024; Yang et. a l., 2025).

The Concept of Crack Fundamental Element (CFE)

7

*Similar Terminologies have been defined in AASHTO R85 (e.g., crack, crack terminus, crack position, etc.) 
Yang, Z., Fung, J., Ho, H., & Tsai, Y.-C. (2025). A Predictive and Precision Pavement Maintenance Methodology Utilizing Multi-Temporal Pavement Images. Transportation Research Record (under review).
Yang, Z. (2024). CRACK PROPAGATION ANALYSIS USING PAVEMENT IMAGE REGISTRATION AND CRACK VECTOR MODEL FOR PREDICTIVE AND PRECISION PAVEMENT MAINTENANCE. School of Civil and Environmental 
Engineering, Georgia Institute of Technology. Doctor of Philosophy.
 



Definition of Crack Vector Model (CVM)
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Procedures  to Es tablish CVM from Range Image

(a) Range image (b) Crack Segmentation (c) Crack Skeleton (d) Crack Vector Model
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(a) (b): Cracking segmentation (pixel-level crack map detection)
(b) (c): Using morphological operations to extract the crack skeleton, then identify the 

cracking intersection and individual crack links.
(c)  (d): Overlay with range image, the cracking width can be measured at each cracking 

vertices.

100 mm 100 mm

• This is an illustration of CVM using Asphalt pavement images.



(a) Range image (b) Crack Segmentation (c) Crack Skeleton (d) Crack Vector Model
100 mm 100 mm

(e) Satellite Image (f) Map Segmentation (g) Road Network (h) Traffic Information

Analogy Between CVM and GIS (geographic information s ys tem)

*Map figures were captured from Google Maps.



Comparison of Range, Segmentation, and CVM Data
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~2 MB ~200 KB
5m



Standard Data Format for CVM Storage
GeoJSON

GeoDataframe

Note: Other crack properties (e.g., crack 
length, width, number of intersections, 
number of branches) can be computed 
from this simple data storage format, using 
simple query functions.

A standard, simple, and universe data format 
supports large scale implemented in the future. 
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• Us ing CVM, each individual crack link can be categorized bas ed on cracking width, orientation, 
location, and dens ity. Their properties  can als o be computed. 

Link-wise Cracking Clas s ification and Attributes  
Computation Us ing CVM

0°

90°
Zone 2 Zone 4

Longitudinal (<20°)

Transverse (>70°)
(45° - 70°)
(20° - 45°)

Non-alligator 
Crack

Alligator Crack

L188.3-W3.5

*A simple model based on cracking density was used to identify alligator cracks in this study. Other alternative methods using ML or DL are available.
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Crack Vector Model (CVM) Implementation on J PCP

(a) Range Image (b) Crack Maps (c) Crack Vector Model



• Crack bifurcation and dis continuity may caus e mis clas s ification
1) The crack map can be dis continuous  (even the crack in the real world is  

continuous ), making the crack link s horter than 12”.
2) Crack bifurcated, caus ing the crack link to be too s hort to cros s  different 

zones .

Challenges  of Us ing Crack Maps  for Slab Clas s ification

1
2 3

4

5

6

(a) Illustration of the challenges (b) A sample of issues on CVM



• A multi-dimens ional cracking extent projection method 
is  introduced to extract geometric features  from crack 
maps . Then, a  decis ion tree is  us ed to clas s ify s lab 
s ta tes .

• Step 1: Clas s ify crack types  according to 
orientation
o Longitudinal: 0° <= Orientation < 20°
o Trans vers e: 70° < Orientation <= 90°
o Other: 20° <= Orientation <= 70°

• Step 2: Meas ure and repres ent crack extent in 
both directions  (vertical and horizontal).
o Small gaps  are filled (< 80mm).

• Step 3: Extract features  that des cribe the 
geometry of the crack extent.
o E.g., length of crack extents  in different directions .

• Step 4: Slab s tate clas s ification us ing decis ion 
tree models .

Proposed Methodology

Figure from https://blog.mindmanager.com/decision-tree-diagrams/ 
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Additional Explanation of the Proposed Methodology
a) Longitudinal Level 2 b) Transverse Level 1 c) Corner Crack d) Shattered Slab



18

• Target Variable: Slab Type (SS, CC, L1, L2, T1, T2)

• Features :
1) Longitudinal Crack Extent (horizontal axis ) (ft)
2) Longitudinal Crack Extent (vertical axis ) (ft)
3) Transverse Crack Extent (horizontal axis ) (ft)
4) Transverse Crack Extent (vertical axis ) (ft)
5) Other Crack Extent (horizontal axis ) (ft)
6) Other Crack Extent (vertical axis ) (ft)
7) Total Longitudinal Crack Gap (ft)
8) Total Transverse Crack Gap (ft)
9) Total Other Crack Gap (ft)
10) Dis tance from Longitudinal Cracks  to the Neares t Horizontal J oint (ft)
11) Dis tance from Longitudinal Cracks  to the Neares t Vertical J oint (ft)
12) Dis tance from Transverse Cracks  to the Neares t Horizontal J oint (ft)
13) Dis tance from Transverse Cracks  to the Neares t Vertical J oint (ft)
14) Dis tance from Other Cracks  to the Neares t Horizontal J oint (ft)
15) Dis tance from Other Cracks  to the Neares t Vertical J oint (ft)
16) Ratio of Vertical to Horizontal Extent for Other Cracks
17) Ratio of Longitudinal Crack Extent to Slab Length
18) Longitudinal and Transverse Cracks  Inters ect
19) Crack Extent (vertical axis ) (ft)
20) Crack Extent (horizontal axis ) (ft)
21) Total Gap (vertical axis ) (ft)
22) Total Gap (horizontal axis ) (ft)

23) Ratio of Vertical Extent to Slab Length
24) Ratio of Vertical to Horizontal Extent
25) Dis tance from Cracks  to the Top Horizontal J oint (ft)
26) Dis tance from Cracks  to the Bottom Horizontal J oint (ft)
27) Dis tance from Cracks  to the Left Transverse J oint (ft)
28) Dis tance from Cracks  to the Right Transverse J oint (ft)
29) Dis tance from Cracks  to the Neares t Horizontal J oint (ft)
30) Dis tance from Cracks  to the Neares t Vertical J oint (ft) 

Input Data for the Decis ion Tree Model



• Steps  for Decis ion Tree Modeling:
1) Data Split: Split the datas et into Training (80%) and Tes ting (20%) s ets  us ing Stratified Sampling to ens ure clas s  

dis tribution is  maintained in both s ets .
2) GridSearchCV & Hyperparameter Tuning:

• Run GridSearchCV on the Training Set with 4-fold s tratified cros s -validation.
• Fine-tune key parameters :

o max_depth
o min_s amples _s plit
o min_s amples _leaf
o criterion (Gini/ Entropy)

• Identify the bes t model bas ed on tra ining s cores  (Weighted F1-Score).
3) Tes t Set Evaluation:

• Evaluate the bes t model's  performance on the Tes ting Set.
• Metrics  include:

o Accuracy /  Weighted F1-Score
o Clas s ification Report
o Confus ion Matrix

4) Visualization & Export:
• Vis ualize the decis ion tree s tructure.
• Export rules  and decis ion paths  for interpretability.

Decis ion Tree with Stratified Sampling and GridSearchCV
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True Fals e

•Training Accuracy (Cross -Validation): 89.33%
•Tes t Accuracy: 88.00%
•Weighted F1-Score: 86.12%
•Number of Clas ses : 6 (SS, CC, L1, L2, T1, T2)
•Number of Training Samples : 100
•Number of Tes t Samples : 25 

True

True Fals e

Fals e

True Fals e

True Fals e

True Fals e

True Fals e

True Fals e

Decis ion Tree Es tablished with 30 Features  as  Input
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Features :
1. Crack Extent (horizontal axis ) (ft)
2. Ratio of Vertical to Horizontal Extent
3. Ratio of Vertical Extent to Slab 

Length
4. Dis tance from Other Cracks  to the 

Neares t Vertical J oint (ft)
5. Transverse Crack Extent (vertical 

axis ) (ft)
6. Dis tance from Transverse Cracks  to 

the Neares t Horizontal J oint (ft)

Decis ion Tree Es tablished with 30 Features  as  Input 
(cont’d)



Decis ion Tree Performance with 30 Features  and Analys is  of 
Top 10 Important Features
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Decis ion Tree Performance with Top 10 Features  (1/2)
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True Fals e

•Training Accuracy (Cross -Validation): 89.43%
•Tes t Accuracy: 88.00%
•Weighted F1-Score: 86.12%
•Number of Clas ses : 6 (SS, CC, L1, L2, T1, T2)
•Number of Training Samples : 100
•Number of Tes t Samples : 25 

True Fals e True Fals e

True Fals e True Fals e True Fals e



Decis ion Tree Performance with Top 10 Features  (2/2)
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Features :
1. Crack Extent (horizontal axis ) (ft)
2. Ratio of Vertical to Horizontal 

Extent
3. Ratio of Vertical Extent to Slab 

Length
4. Ratio of Longitudinal Crack Extent to 

Slab Length



J CPC Clas s ification Flow 
Chart Es tablished Us ing 
the Knowledge Extracted 
from the Decis ion Tree
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Three key features :
1. Crack Extent (horizontal axis ) (ft)
2. Ratio of Vertical to Horizontal Extent
3. Ratio of Vertical Extent to Slab Length

• Key features and thresholds are extracted 
from the decision tree that can be used to 
establish an easy and implementable flow 
chart for slab state classification.



Decis ion Tree: Clas s  Performance Ins ights
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1) Strong Clas ses :
• L2 (Longitudinal Slabs ) and SS (Shattered Slabs ):

o Perfect precis ion, recall, and F1-s core.
o The model confidently predicts  thes e clas s es  without 

mis clas s ifications .
• T2 (Transverse Slabs ):

o High precis ion (89%) and perfect recall (100%).
o Mis clas s ifications  are minimal.

2) Intermediate Clas ses :
• L1 (Longitudinal Slabs ):

o Good precis ion, recall, and F1-s core (80%), but s ome 
mis clas s ifications  into CC.

3) Weak Clas ses :
• T1 (Transverse Slabs ):

o Precis ion, recall, and F1-s core are all 0.
o Indicates  no correct predictions  for this  clas s .
o Reason: Only one ins tance in the tes t s et. This  s ugges ts  

ins ufficient data  for the model to learn this  clas s  effectively.
• CC (Corner Cracked Slabs ):

o Moderate precis ion, recall, and F1-s core (67%).
o Mis clas s ifications  into L1 and T1, as  s hown in the confus ion 

matrix.



L1 Slabs
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L2 Slabs
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T1 Slabs
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* This one was 
misclassified as CC.



T2 Slabs
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Corner Cracked Slabs
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Shattered Slabs
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Misclas s ifications
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L1 was  misclas s ified as  
CC

CC was  misclas s ified as  
L1



• This  s tudy propos es  a  novel methodology for automated and interpretable J PCP 
s lab clas s ification, a ligned with a  revis ed LTPP dis tres s  definition. An innovative 
Crack Vector Model (CVM) and a  multi-dimens ional cracking extent projection 
method are introduced to extract geometric features  from crack maps , enabling 
the us e of tree-bas ed models  for effective s lab clas s ification. 

• The res ults  s how a weighted F1-s core of 86.12%, comparable to that of a  DL 
model, while tree-bas ed models  offer greater interpretability and eas e of 
implementation. 

• The improved interpretability and s implicity of this  method facilita tes  its  practical 
application in s lab-bas ed J PCP clas s ification, s upporting trans porta tion agencies  
in achieving cos t-effective, precis ion pavement maintenance.

Conclus ions
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