

PHYSICAL INTERPRETATION OF CONTACTLESS ENERGY-BASED TIRE-PAVEMENT FRICTION MODELS

AHMAD ALHASAN, PH.D., P.E., HNTB SENIOR TECHNICAL ADVISOR/PAVEMENTS TEAM LEADER

OUTLINE

BACKGROUND

TEXTURE AND FRICTION MEASUREMENTS

FRICTION-TEXTURE MODELS

CONCLUDING REMARKS AND FUTURE WORK

MODELING REALITY

WHY CONTACTLESS FRICTION?

- FRICTION MEASUREMENTS HARMONIZATION
- MEASUREMENTS AT CHALLENGING LOCATIONS
- RELATING FRICTION MEASUREMENTS TO ACTUAL TRAFFIC
 DEMANDS
- BETTER UNDERSTAND THE IMPACT OF DIFFERENT TEXTURE FEATURES (ENGINEERING MIXES IN BALANCE MIX DESIGN)
- UNIVERSAL MEASUREMENTS LESS SENSITIVE TO TESTING CONDITIONS.

BACK TO THE FUNDAMENTALS

Persson's friction model provided a robust physical and analytical solutions for a simple rubber block.

MODELING REALITY

TESTING THE THEORY

The findings were promising, and we learned that the contribution is mostly from hysteresis.

MODELING REALITY

IMPLEMENTING A CONCEPT

Approximation coefficient

(C)

Detail coefficients

OUTLINE

BACKGROUND

TEXTURE AND FRICTION MEASUREMENTS

FRICTION-TEXTURE MODELS

CONCLUDING REMARKS AND FUTURE WORK

DATA COLLECTION AT ICART

Collected Texture, DFT, and LWST (Smooth and Ribbed)

8.5" CRCP - Turf Drag Finish	Search Finish with Dismand Granding	Turf Drag Finish w/ Diamond Grooving	Smooth Finish with Diamond Grinding	Smooth Finish	Turf Drag Finish	Turf Drag Finish
11.5" 12.5 mm SMA	Artificial Rutting	12.5 mm SMA	9.5 mm Dense Graded HMA	Maxe surfacing with 20% Caldwell Bacate & 20% Sing	Single Chip Seal	5.5 mm Decar Graded HMA
8.5" JPCP - Turf Drag Finish	Artificial Faulting	Longitudinal Tining	Transverse Tining	Turf Drag Finish	Turf Drag Finish	Turf Drag Finish

SPECTRAL CONTENT (PSD)

SPECTRAL CONTENT (W.E.)

OUTLINE

BACKGROUND

TEXTURE AND FRICTION MEASUREMENTS FRICTION-TEXTURE MODELS

CONCLUDING REMARKS AND FUTURE WORK

MODELING REALITY

TOWARDS A GLOBAL FRICTION MODEL

- $F = F[S, V, A, W, T, F_s]$
- F_s is the base friction measurement (used LWST at 40 MPH for now)
- *S* tire slip ratio operator
- *V* nominal vehicle speed impact ratio operator
- A tire angle impact
- *W* wet conditions operator
- *T* tire characteristics operator

BASE FRICTION MEASUREMENT

DECOMPOSING LWST MEASUREMENTS

SLIP RATIO IMPACT

WAVELET ENERGIES CONTRIBUTIONS

Slip ratio operator regression coefficients.

IMPACT OF SPEED

NORMALIZING MEASUREMENTS

• $SN_{\nu} = SN_{\nu} \sum_{i=1}^{n} a_{\nu,i} E_i$

CONCLUDING REMARKS AND FUTURE WORK

- WE ARE PLANNING ON COLLECTING ADDITIONAL DATA TO COVER A WIDER RANGE OF SURFACES AND CONDITIONS.
- IT IS IMPORTANT TO TEST THE MODELS AGAINST OTHER DEVICES AND TECHNOLOGIES.
- THE APPROACH CAN LEAD TO A GENERAL MODEL ENCOMPASSING DIFFERENT TIRE-PAVEMENT TRACTION CONDITIONS.

