

EVALUATION OF SURFACE CHARACTERISTICS ON FLORIDA'S CONCRETE TEST ROAD AND LONGITUDINAL GROOVING PROJECT

CHARLES HOLZSCHUHER

FLORIDA DEPARTMENT OF TRANSPORTATION (FDOT)

OBJECTIVES

- Florida's US 301 concrete test road
 - Evaluate the surface characteristics of three different surface textures (LDG, FDOT's bridge deck and NGCS) in terms of friction, macrotexture, noise and international roughness index (IRI).
- I-95 in Brevard County, Florida
 - A pilot longitudinal grooving project was selected to study friction and macrotexture

FLORIDA CONCRETE TEST ROAD

- Clay County, SR 200 / US 301
- Adjacent to existing NB lanes
- 4-lane rural arterial with 40 ft. median, 31% trucks, design speed of 70 mph
- 2.5 miles of two-lane roadway running parallel to existing northbound lanes.
- NB traffic diverted to adjacent concrete test road
- Existing NB asphalt road will provide alternate traffic lanes during dynamic testing and performance evaluation periods
- WIM station & Data Building at south end of test road

TEST ROAD RESEARCH NEEDS

- Structural Experiment
 - Appropriate thickness
 - New base options
 - RAP as a concrete aggregate
- Drainage Experiment
 - Edge drain effectiveness
- Calibration Experiment
 - ME design method
- Alternative Surface Textures
 - Friction, texture and noise

SURFACE TEXTURES OF FLORIDA'S CONCRETE TEST ROAD

Longitudinal Diamond Grind (LDG)

Standard Bridge Deck Texture (Bridge)

Next Generation Concrete Surface (NGCS)

LONGITUDINAL DIAMOND GRINDING (LDG) SURFACE TEXTURE

- Longitudinal Diamond Grinding (LDG) is required for all rigid pavements (Section 352-4).
 - 1/10" diamond blades width
 - 1/32" height of peak ridges
 - 60 Blades/Foot

Figure A. Schematic section drawing for longitudinal diamond grinding texture

FLORIDA BRIDGE DECK SURFACE TEXTURE

- LDG + Transverse Grooving
 - Longitudinal Grinding
 - Transverse Grooving
 - 1/8" wide
 - 3/16" deep
 - Groove Spacing
 - -3/4", 1-1/8", 5/8", 1", 5/8", 1-1/8", 3/4"
 - -in 6" repetitions

Figure B. Schematic longitudinal section drawing for diamond grinding with transverse grooving

NEXT GENERATION CONCRETE SURFACE

- Longitudinal Grinding
 - -80-85 Blades/Foot
- Longitudinal Grooving
 - 1/8" Wide Groove
 - -3/16" Depth
 - 1/2" to 5/8" Groove Spacing

EVALUATION PLAN

- Locked Wheel Friction
- Surface Texture
- Noise
- Roughness

LOCKED-WHEEL FRICTION TESTER

- Friction collection is in accordance with ASTM E274. Friction Number (FN40) is reported.
- Texture collection is in accordance with ASTM E1845 Mean Profile Depth (MPD) is reported.

OBSI AND WAYSIDE NOISE

- On-Board Sound Intensity (OBSI) noise collection is in accordance with AASHTO T-360. Intensity level (dBA) is reported.
- Wayside noise collection is accordance with AASHTO TP 98. Intensity level (dBA) is reported.

HIGH-SPEED LASER PROFILER (HSLP)

 Smoothness collection is in accordance with FM 5-549 "Measuring Pavement Longitudinal Profiles Using a High-Speed Inertial Profiler." International Roughness Index (IRI) is reported.

TEST SECTION AND SET UP

TEST SECTION GROUPS

TEST SET UP

Group	Sections	Texture	Length m (ft)
1	1-5	NGCS	342.9 (1,125)
2	6-10	Bridge	342.9 (1,125)
3	11-15	LDG	342.9 (1,125)
4	16-20	NGCS	312.4 (1,025)
5	21-25	Bridge	342.9 (1,125)
6	26-30	LDG	342.9 (1,125)
7	31-36	NGCS	411.5 (1,350)
8	37-41	Bridge	359.1 (1,178)
9	42-46	LDG	360.3 (1,182)
10	47-52	NGCS	431.6 (1,416)

Test Method	ASTM/AA SHTO/FM	Test Speed km/h (mph)	Number of Groups	Numbe r of Tests	Total Tests
LWT	ASTM E	48 (30)	10	2	20
	274	64 (40)	10	2	20
	ASTM E	80 (50)	10	2	20
	501	97 (60)	10	2	20
	ASTM E	48 (30)	10	2	20
	274	64 (40)	10	2	20
	ASTM E	80 (50)	10	2	20
	524	97 (60)	10	2	20
Line Texture Laser	ASTM E1845	48 (30)	10	2	20
OBSI	AASTH T- 360	97 (60)	10	3	30
Wayside	AASHTO TP-98	97 (60)	3	2	6
HSLP	FM 5-549	48 (30)	10	2	20

Results and Discussions

TEST SPEED VS FRICTION NUMBER

Ribbed Tire

Smooth Tire

TEXTURE TYPE COMPARISONS OF FN40R/40S

Ribbed Tire

80 70 60 50 FN40R 40 66.0 30 54.0 52.7 20 10 0 Bridge **NGCS** LDG US 301 Surface Texture Type

Smooth Tire

MACROTEXTURE AND MEAN PROFILE DEPTH (MPD)

TEXTURE TYPE VERSUS OBSI AND WAYSIDE NOISE

SMOOTHNESS (IRI)

SUMMARY-US 301 TEST ROAD

- RESULTS ARE BASED ON LESS THAN 1 YEAR OLD TEST SECTIONS.
- FRICTION-PERFORMANCE IS GOOD FOR ALL SECTIONS. BRIDGE (LDG/TG) HAS THE HIGHEST FN.
- FRICTION DECREASES WITH INCREASED TEST SPEEDS FOR ALL THREE CONCRETE TEXTURES.
- MACROTEXTURE-BRIDGE (LDG/TG) HAS THE HIGHEST MPD, FOLLOWED BY NGCS AND LDG.
- OBSI Noise-Difference among 3 sections are within 1.7 dBA.
- Wayside Noise-Bridge (LDG/TG) has the highest noise, followed by NGCS and LDG.

1-95 LONGITUDINAL GROOVING PROJECT

- I-95 in Brevard County, Florida
 - Section A 0.918 miles,Section B is 0.630 miles.
 - 70 mph Design Speed
 - 4 lanes
 - Work began on09/13/22 andcompleted on 10/14/22

FRICTION PRE VS POST GROOVING

- Pre-Grooving Friction Numbers Mostly 30's
- Post-Grooving Friction Numbers Now 40's & 50's!
- 35% Increase in Friction

SMOOTH VS RIBBED

- Similar Results (Ribbed Tire vs Smooth Tire Friction)
 - Indicates Good Macrotexture & Hydroplaning Resistance

TEXTURE (MPD)-PRE VS POST GROOVING

ST. AUGUSTINE

Longitudinal Grooving Significantly Increased Macrotexture

 Almost Doubled In Most Cases Indicates Good Hydroplaning
 Resistance

INCREASE PERCENTAGE

SUMMARY I-95

- BOTH FRICTION AND MACROTEXTURE WERE INCREASED SIGNIFICANTLY
 AFTER LONGITUDINAL GROOVING. ON AVERAGE, FRICTION WAS
 INCREASED BY MORE THAN 30% AND MACROTEXTURE IN TERMS OF
 MPD WAS INCREASED BY MORE THAN 60%.
- The difference in friction between ribbed tire and smooth tire is no more than 15%, which indicates longitudinally grooving concrete pavement provides good microtexture and macrotexture.

