


• Raveling distress, also known as aggregate loss or surface 
disintegration

• Wearing away of the pavement surface caused by the dislodging of 
aggregate particles and loss of asphalt binder [1].

• Most common distress affecting asphalt pavements with open-graded 
friction course (OGFC) surfaces [2, 3].

Pavement Raveling Distress

Severity Level 1 Severity Level 2 Severity Level 3

GDOT Distress Manual Examples on OGFC
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• Open Graded Friction Course (OGFC) 
surfaces have an open-graded aggregate 
skeleton with interconnecting voids to 
provide a fast, vertical drainage of rainfall 
down to an impermeable underlying layer, 
and eventually to the pavement edge [4]. 

• Safety and environmental benefits

• OGFC surfaces are constructed on most of 
Georgia’s interstate highways with asphalt 
pavements.

• Raveling is the predominant distress type 
that makes those pavements deficient and 
requiring maintenance 

Raveling Distress on OGFC Surfaces

Typical OGFC pavement 
design on Georgia's 
interstate highways
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Fast Water Drainage of 
OGFC surface



Impact of Raveling Distress
5

• Increased Road 
Tire Noise

• Poor Ride 
Quality

Shorter Pavement 
Life Flying Stones Ponding and 

Hydroplaning

Excessive pavement raveling impacts 1) the serviceability and lifespan 
of the pavement, and 2) the safety and comfort of drivers.



• Raveling on OGFC pavements progresses 
rapidly [5]

• Accelerates the appearance of other 
distresses

• Damages the underlying pavement layers

• Understanding raveling deterioration 
behavior allows for

• Accurate prediction of its condition
• Optimized predictive maintenance and 

rehabilitation decision-making (3R: Right 
treatment, Right timing, Right location)

Importance of Monitoring and Understanding Raveling 
Deterioration
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Micro-milling and 
thin overlay

Conventional milling 
and resurfacing 

53% lifecycle cost saving 
(If applied at the right timing) [18]



• Visual rating survey protocol to classify pavement segments (e.g., 1 mile) into different 
severity levels (e.g. low, moderate, severe) based on qualitative definitions

• E.g., 30% SL1, 60% SL2, 10% SL3 in a 1-mile segment

• These survey practices are 1) Time-consuming and labor-intensive, and 2) Subjective and error-prone

• Condition rating data limitations
• Cannot support deterioration analysis due to unreliability and being mostly qualitative
• Severity levels defined lack the granularity to capture the optimal timing of treatments (e.g., 

micromilling)
• Aggregated measures over a segment cannot be used to support localized treatment decision-

making

Traditional Raveling Condition Assessment 
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Severity Level 1
Loss of substantial 
number of stones

Severity Level 2
Loss of most surface

Severity Level 3
Loss of substantial portion of 

surface layer ( >1/2 depth) 

Raveling Rating 
Definition in 

GDOT Distress 
Manual



Adoption of 3D laser imaging systems
• Mainstream technology among state 

DOTs for automated pavement 
surveying and condition assessment

• System of 3D laser sensors capturing the 
high-resolution 3D pavement surface 
data with full lane coverage at highway 
speed

• Extract pavement surface indicators and 
distresses (cracking, rutting, faulting, IRI, 
macrotexture, etc.)
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Georgia Tech Sensing Van with an 
installed 3D laser imaging system

Sample pavement 
range (3D) image 

with cracking 
distress

3D pavement 
surface texture 

data visualization



Raveling Condition Assessment Using 3D Pavement 
Surface Data

Macrotexture 
Indicators

Aggregate Loss 
Quantification

Raveling detection 
& severity level 
classification
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• Mean Profile Depth (MPD) [7] 
• Root Mean Square Texture (RMST) [8, 9]. 

• Pavemetrics LCMS Raveling Index (RI)
• Stoneway algorithm 
• Yu and Tsai [13] aggregate loss depth, loss area percentage, and 

loss volume percentage

• Mathavan et al. [14] detection method using signal processing 
• Tsai & Wang [6]  ML-based detection method
• Hsieh & Tsai [15] DL-based detection and severity level classification 

method using pavement image with macrotexture analysis 



• No study has analyzed the individual raveling distress field 
deterioration behavior using multi-timestamp 3D pavement surface 
data. 

• Need to leverage the high-quality 3D pavement surface data to study 
and better understand the raveling deterioration behavior 
quantitatively

Research Need
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• Evaluate the feasibility of using selected macrotexture indicators 
and aggregate loss indicators extracted from real-world, large-scale 
3D pavement surface dataset to study the long-term pavement 
raveling deterioration behavior. 

• The performance of the selected indicators will be evaluated in monitoring the 
raveling condition progression over time. 

• Findings will support the development of an accurate raveling 
condition prediction model. 

• Support predictive and cost-effective maintenance decision-making

Research Objective
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Selected Raveling Indicators
Macrotexture 

Based Indicators

Aggregate Loss 
Based Indicators
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• Mean Profile Depth (MPD) [7] 
• Root Mean Square Texture (RMST) [8, 9]. 

• Pavemetrics LCMS Raveling Index (RI)
• Aggregate loss indicator proposed by Yu and Tsai [13] that 

quantifies aggregate loss depth, percent loss area and volume

RMS



Selected Raveling Indicators - Raveling Index
• Algorithm implemented by Pavemetrics LCMS RoadInspect software
• Quantifies raveling by measuring the volume voids per unit area (cm3/m2) due to missing 

aggregates [10, 11]
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Rectified Range Image Color Coded Raveling Severity Quantified Aggregate Volume Loss



Selected Raveling Indicators - Aggregate Loss Indicator
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Raw Range Image Rectified Range Image Detected Raveling Area

• Method developed by Yu&Tsai [13] 
• Estimates a reference surface that represent original surface with no raveling
• Quantifies raveling by identifying areas with significant depth difference with the reference surface
• Represented as %Area_Loss, %Volume_Loss, and Avg_Loss_Depth.



Data Preparation and Processing
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Raveling Indicator Computation

Aggregate each indicator over 100-ft and 0.1-mile intervals

…

Range Image 1
MP: 0.003

Range Image 2
MP: 0.006

Range Image 3
MP: 0.009

Range Image X
MP: Y

13
 ft

16.5 ft
Collected 3D Pavement Range Images

Indicator 1 Value 
Indicator 2 Value 
Indicator 3 Value 
Indicator 4 Value 

Indicator 1 Value 
Indicator 2 Value 
Indicator 3 Value 
Indicator 4 Value 

Indicator 1 Value 
Indicator 2 Value 
Indicator 3 Value 
Indicator 4 Value 

Indicator 1 Value 
Indicator 2 Value 
Indicator 3 Value 
Indicator 4 Value 

…



Spatial-Temporal Analysis of Raveling Condition
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Spatial-Temporal Analysis of Raveling Condition
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Distance

Raveling
Indicator

Good

Poor

Year 1
Year 2

Year 3

Year 4
Y1     Y2     Y3     Y4

Raveling
Indicator

Good Performance

Y1     Y2     Y3     Y4

Raveling
Indicator

Poor Performance



Performance Evaluation: SROCC

To quantitatively assess the performance of the indicators in 
showing an increasing deterioration trend with time.

• Spearman rank-order correlation coefficient (SROCC) was 
used as a performance metric. 

• Nonparametric measure of rank correlation assessing how 
well the relationship between two variables can be described 
as strictly increasing or decreasing, regardless of the change 
rate.  

• Deterioration is expected to be strictly increasing, but not 
necessarily at a constant rate
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• Eight 1-mile segments with OGFC surface 
selected on I-59 and I-575 in Georgia

• Typical 2-lane divided interstate highways 
with truck-lane surveyed consistently

• Analysis period: 2014 to 2019 (6 years)

• Diverse raveling condition

• None or minimal maintenance repairs (e.g., 
patching)

Case Study on Georgia Interstate Highways 
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Northbound Direction
MP 14 to MP 19

2014 – 2019

Northbound Direction
MP 1 to MP 3; MP 6 to MP 8

 2014 – 2018



Spatial-temporal deterioration: 100-ft aggregation interval

Average MPD (mm)

Average RMS (mm) Aggregate Loss Area (%) 

LCMS Raveling Index (cm3/m2)
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Low Texture/Aggregate Loss
Caused by Concrete Bridge



Spatial-temporal deterioration: 100-ft aggregation interval

Average MPD (mm)
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2015 Data

2014 Data

Macrotexture Indicator showed illogical trend:
Does not reflect year-to-year increase as expected.



Spatial-temporal deterioration: 100-ft aggregation interval

Aggregate Loss Area (%) 
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LCMS Raveling Index (cm3/m2)
Aggregate Loss Indicator 
showed more logical trend:
More consistent year-to-year 
increase in raveling.



Spatial-temporal deterioration: 0.1-mile aggregation interval

Average MPD (mm)

Average RMS (mm) Aggregate Loss Area (%) 

LCMS Raveling Index (cm3/m2)
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Illogical Trend in 
Macrotexture-

Based Indicators

More logical Trend in 
Aggregate Loss-
Based Indicators



Temporal deterioration trend in 0.1-mile segments
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Average MPD (mm)

Average RMS (mm) Aggregate Loss Area (%) 

LCMS Raveling Index (cm3/m2)



Not all aggregated segments show consistently increasing trends due 
to the following potential factors:
• Data quality of 3D pavement surface data (i.e., accuracy)

• Data registration between multiple timestamps (misalignment)
• Vehicle wandering
• Segments termini not precisely aligned

• Localized resurfacing for severe raveling spots 

Potential Factors Causing Imperfect Trends
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SROCC for 100-ft aggregation interval

Indicator

SROCC
Overall 
SROCC

I-59 Northbound I-575 Northbound
MP 

14-15
MP 

16-17
MP 

17-18
MP 

18-19
MP 
1-2

MP 
2-3

MP 
6-7

MP 
7-8

Macrotexture-
Based Indicators

Average MPD 0.81 0.71 0.79 0.70 0.53 0.59 0.62 0.53 0.66

Average RMS 0.83 0.76 0.83 0.69 0.49 0.46 0.65 0.55 0.66

Aggregate Loss-
Based Indicators

Raveling Index 
(LCMS) 0.88 0.91 0.89 0.77 0.79 0.85 0.84 0.74 0.83

Loss Depth 0.68 0.78 0.57 0.22 0.64 0.51 0.54 0.43 0.55

Loss Area 0.92 0.96 0.93 0.83 0.82 0.84 0.88 0.73 0.86

Loss Volume 0.92 0.95 0.93 0.83 0.83 0.82 0.85 0.73 0.86
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SROCC for 0.1-mile aggregation interval
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Indicator

SROCC
Overall 
SROCC

I-59 Northbound I-575 Northbound
MP 

14-15
MP 

16-17
MP 

17-18
MP 

18-19
MP 
1-2

MP 
2-3

MP 
6-7

MP 
7-8

Macrotexture-
Based Indicators

Average MPD 0.85 0.76 0.82 0.71 0.58 0.62 0.69 0.59 0.70

Average RMS 0.82 0.80 0.90 0.71 0.55 0.53 0.68 0.65 0.70

Aggregate Loss-
Based Indicators

Raveling Index 
(LCMS) 0.92 0.92 0.94 0.75 0.86 0.91 0.83 0.80 0.87

Loss Depth 0.79 0.78 0.45 0.25 0.68 0.59 0.65 0.57 0.59

Loss Area 0.97 0.98 0.97 0.85 0.83 0.85 0.88 0.85 0.90

Loss Volume 0.96 0.98 0.96 0.85 0.81 0.85 0.85 0.84 0.89



I-59 NB MP14 to MP19: Loss Area % (2014-2019)
28



• Aggregate loss-based indicators show a better performance in monitoring 
raveling condition deterioration compared to macrotexture-based indicators.

• The selected aggregate loss-based indicators (LCMS Raveling Index and Yu&Tsai 
aggregate loss quantification) show a promising performance.
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Findings

 This study proves the feasibility of using quantitative raveling indicators 
extracted from 3D pavement surface data to adequately monitor the raveling 
deterioration.

 This was previously infeasible using existing qualitative rating measures.



• Performing a comprehensive raveling deterioration analysis: Effects of various 

environmental, traffic, and design factors on raveling deterioration.

• Developing an accurate raveling condition forecasting model

• Determining the optimal timing of raveling treatment options associated with 

the quantitative raveling indicators.

• Exploring a standardized raveling quantification indicator that agencies can 

adopt to support condition assessment, forecasting, and treatment selection.
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Recommendations for future research
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