RPUG 2023

St. Louis, MO / Southern Illinois

THE GATEWAY

TO KNOWLEDGE ABOUT SURFACE CHARACTERISTICS

REAL-TIME SMOOTHNESS UPDATES

Illinois Department of Transportation David Merritt, P.E. George K. Chang, P.E. The Transtec Group, Inc.

THE TRANSTEC GROUP

Real-Time Smoothness Updates

- Overview of RTS Technology and Implementation
- RTS for Concrete Paving
- RTS for Asphalt Paving

Real-Time Smoothness Update

- Overview of RTS Technology and Implementation
- RTS for Concrete Paving
- RTS for Asphalt Paving

Real-time Smoothness (RTS) is a <u>Quality Control tool</u> for assessing pavement smoothness during construction (paving operations).

- Three Primary Purposes
 - 1) Provide a general idea of smoothness (IRI) values during paving.
 - 2) Assess the impact of changes to paving operations on smoothness during paving.
 - 3) Identify (and mitigate) systematic paving factors that may be impacting smoothness.

- Equipment: Profiling Sensors
 - Ames RTP (laser based)
 - Gomaco GSI (sonic sensor plus slope meter)
 - SSI On-Paver Profiler (laser based)

- Equipment: DMI and GPS
 - Stand-alone DMI
 - Tap into paver DMI (GSI on newer GOMACO pavers)

• Equipment: Data Collection and Feedback

RTS Implementation Updates

- 2010 2013: SHRP2 Project R06(E) RTS technology evaluation
- 2014 2017: SHRP2 Solutions RTS technology implementation
 - 11 equipment loans
 - 8 workshops
- 2017 2019: FHWA RTS technology implementation
 - 10 equipment loans
 - On-call technical support
 - 2 webinars
 - Guide Specification
 - Guidelines for Best Practices
- 2020 2024: FHWA-CP Tech Center Cooperative Agreement
 - 6 equipment loans
 - On-call technical support

RTS Implementation Updates

- SHRP2 R06(E) Final Report S2-R06E-RR-1 <u>http://www.trb.org/Main/Blurbs/167282.aspx</u>
- FHWA and CP Tech Center Implementation

https://cptechcenter.org/real-time-smoothness/

- Project Reports and Equipment Loan Reports
- Presentations and Webinars
- Implementation and Best Practices for Concrete Pavement Smoothness
- Guide Specification (AASHTO R54 Commentary)
- FHWA Concrete Clips (YouTube)

Real-Time Smoothness Updates

RPUG 2023 Mentode Participation Contraction Contracti

- Overview of RTS Technology and Implementation
- RTS for Concrete Paving
- RTS for Asphalt Paving

Using RTS Systems

- 1. Provide a general idea of smoothness (IRI) values during paving.
- 2. Assess the impact of changes to paving operations on smoothness during paving.
- 3. Identify (and mitigate) systematic paving factors that may be impacting smoothness.

Using RTS Systems

1. Provide a general idea of smoothness (IRI) values during paving.

- General trends for smoothness during paving.
- No "surprises" when QC profile data is collected.
- RTS vs. QC IRI

• Raw profiles are different, but trends are similar

• Roughness results are different (RTS generally higher) but trends are similar.

- There is no fixed correlation between RTS and QC profile numbers.
- In general, RTS numbers will always be higher, but the degree is project/crew/equipment specific.
- Any correlation will need to be established during the first few days of paving.

• Rule of thumb: the higher the RTS numbers, the greater the difference between RTS and QC, the lower the RTS numbers, the smaller the difference.

Project A (Concrete)

	Segment	RTS IRI	QC MRI	Difference
		(in/mi)	(in/mi)	(in/mi)
Day 1	1	113.2	67.0	46.2
	2	77.3	57.0	20.2
	3	79.9	64.6	15.3
Day 2	1	90.0	53.2	36.7
	2	108.9	77.5	31.4
	3	114.4	57.2	57.1
Day 3	1	111.7	65.3	46.4
	2	118.2	71.0	47.2
	3	116.4	68.0	48.4
	4	94.9	61.9	33.1
Day 4	1	122.6	64.5	58.1
	2	122.5	61.9	60.7
	Avg.	105.8	64.1	41.7

Project B (Concrete)

	Segment	RTS IRI	QC MRI	Difference
		(in/mi)	(in/mi)	(in/mi)
Day 1	1	66.2	61.1	5.1
	2	65.7	62.2	3.5
	3	58.0	48.8	9.2
Day 2	1	59.3	51.6	7.7
	2	59.4	47.7	11.7
	3	62.5	45.1	17.4
	4	54.3	48.2	6.2
Day 3	1	54.7	44.1	10.6
	2	65.6	57.8	7.8
	3	69.6	57.6	12.0
	4	70.9	61.1	9.8
Day 4	1	58.1	53.0	5.1
	2	91.8	66.3	25.4
	3	71.2	54.3	17.0
	4	86.5	66.5	20.1
	Avg.	66.3	55.0	11.2

Using RTS Systems

- 2. Assess the impact of changes to paving operations on smoothness during paving.
 - Changes to concrete mix
 - Changes to paver settings
 - Grade control sensitivity
 - Vibrator settings
 - Concrete (or asphalt) head
 - NOTE: Changes don't show up immediately!

• Concrete Mixture Adjustments

Impact of Paving Operation Changes

Impact of Paving Operation Changes

• Paver Padline Effects

Using RTS Systems

3. Identify (and mitigate) systematic paving factors that may be impacting smoothness.

- "Patterns" in pavement profile related to paving factors.
- What shows up in both the RTS and QC profiles.
- NOTE: Always keep it in context of overall IRI values.

• Joint spacing/dowel basket effects

Joint spacing/dowel basket effects

• Project utilizing Dowel Bar Inserter

CRCP Bar Supports

• Stringline Effects

• Stringline Effects

• Stringline Effects

Real-Time Smoothness Update

- Overview of RTS Technology and Implementation
- RTS for Concrete Paving
- RTS for Asphalt Paving

RTS for Asphalt Paving

- Asphalt Real-Time Smoothness: "ARTS"
- NRRA Proof-of-Concept Study
 - Not an equipment rodeo or loan program
- Two Evaluations
 - Iowa (2021)
 - Wisconsin (2022)

• Asphalt Real-Time Smoothness: "ARTS"

- Key Aspects of Evaluation
 - RTS Sensors
 - Mounting locations
 - Durability in high temperatures
 - Impact of various paving factors:
 - Material delivery (e.g., use of MTV)
 - Material movement through paver
 - Lift thickness
 - Grade control
 - Tow point movement
 - Screed movement/vibration
 - Paver stops
 - Compaction/rolling (behind RTS)
 - Grade and superelevation transitions
 - Etc.

Asphalt Real-Til (ARTS) for Asph	MENT OF ORTATION PROOF-OF-CONCEPT STUDY me Smoothness alt Paving
George K. Chang, Principal Investi The Transtec Group, Inc.	gator
FEBRUARY 2023	
Final Report NRRA202302	
NRR/National Road Research Allianc	e
Office of Research & Innovation - mindor	-gov/research

• General Observations

• Good correlation (similar trends) between ARTS and QC profiles.

- General Observations
 - ARTS IRI values consistently higher than QC IRI profiles.

- General Observations
 - Use of MTV vs. end dump for material delivery apparent in profile data.
 - Grade control is important: averaging skis vs. slope control.
 - Roller compaction appeared to reduce long wavelength profile content and improve smoothness (when compared to ARTS data).
 - Tow point movement is believed to have a significant impact, but it could not be directly correlated to roughness.
 - More data under varying conditions is needed!

REAL-TIME SMOOTHNESS UPDATES

Thank You!

David K. Merritt, P.E. Project Director The Transtec Group, Inc. dmerritt@thetranstecgroup.com

