

Road Mapping Innovation based on Autonomous

Jacopo Alaimo

Business Development, XenomatiX

Vehicle sensors

History of LiDAR

Principle of LiDAR

Detection Capabilities

	Lidar	Radar	Video
Sensing Dimensions	3D	1D	2D
			×
Field of View			~
Object Detection – Shape / Orientation		×	~
Object Detection – Static / Lateral Motion		×	~
Resolution with Range		×	×
Range Accuracy			~
Rain, Snow, Smog, Dust, Sand Storm			×
Fog			×
Ambient Light – Pitch Darkness / Bright Sunlight			×
Read Sign / Color		×	<i>~</i>
Intensity / Reflectivity			~

Credits @ Quanergy 2022

LiDAR is required to fill the gaps in camera and radar-based perception and to enable the automotive industry to implement higher levels of autonomous driving.

Lidar in Automotive for Safety

Today	ADAS Basic	L2+	L2++/L3	AV Subs
Camera	0-2	1-3	-	-
Radar	0-1	3-5	-	-
Lidar	0	0-1	-	-
Future Migration	ADAS Basic	L2+	L2++/L3	AV Subs
Camera	1-2	2-7	8-12	12
Radar	0-1	5	5-6	8
LīDAR	0-1	1	1	3-4
Night Vision	0	0	0-1	1
System Cost (w/DMS, compute, software)	~\$200	~\$1,000	~\$1,600	~\$5,000
Driver of Future Migration (ex. costs)	ADAS Basic	12÷	12 ; ; /13	AV Subs
Camera	Regulation	FoV	Surround View	Surround View
Radar	-	Surround View	Surround View	Surround View
Lidar	Night/Weather	Robustness	Robustness	Surround View
Night Vision	-	-	Redundancy	Redundancy
		1	Credits	(a) City Research 2020

Higher levels of automation require:

- redundancy and overlap between sensors are required
- LiDAR becomes a necessity

Automotive LiDAR Applications

X Collision Avoidance X Highway pilot X Traffic Jam Pilot X Lane keeping and Lane change X Valet Parking X Parking Monitoring Mapping & SLAM X X . . . X Smart Cities

X Autonomous driving

LiDAR in Automotive Ride Comfort

3

3

3

4

3.5

3.5

3.5

4.5

4

4

4

4.5

MPC with SE -original

4.5

4.5

5

5

- 5

1.5

1

 $\mathbf{2}$

2.5

time [s]

3

3.5

	Predictive Suspensions
Goal	More ride comfort thanks to preview for active suspension
Approach	XenoTrack measures road profile & generates suspension control signal
Result	Up to 70% more body stabilityBest quality road profile measurement

0.5

0

Measurement Principle

What is it:

Measurement of the height profile of the road before it hits the wheels, to allow a (semi-)active suspension keeping the car straight and stable.

Characteristics:

- Real-time output of road profile in front of each of the 4 wheels (540Hz)
- Works on any road type
- High accuracy
- High resolution
- Automatic roll & pitch calculation
- Configurable feedforward delay

Road damage

3D view reveals:

- X Longitudinal and traversal cracks
- X Potholes and repaired asphalt
- **X Gutter** next to curbstone

Road mapping – Future

Cost

Today Sensors mounted on everyday vehicle Measurements frequency months Data collected by dedicated teams

Yesterday Sensors mounted on special vehicle Dedicated personnel Data collected by dedicated teams

MFV / Visual Inspection

Dedicated Vehicle

In the next 5 years Sensors mounted on utilities vehicles Measurements frequency weeks

by Utility

Services

In the next 10 years Sensors mounted on everyone's car Real time mapping Infrastructure collecting the data

V2

12 Confidential ©2022 XenomatiX

View of the Road Before and After the Winter

XENOMATIX

- XenoTrack will see the bottom of the puddle since the light reflection at the bottom is more intense than the one at the surface.
- Road profile can still be seen, and driver can be alerted in case of aquaplaning risk.

Stereovision cameras can see water but don't understand the depth / amount / risk

Wet Road Measurements

XenoTack v2.1 RC1 XP OFFLINE.

– 0 ×

Measurements in Snow

Conclusion

Safety	Maintenance planning	Comfort	Self-driving cars
- ADAS functions such as lane keeping relay on clear road markings	- Objective numbers reveal where and when to best spend road maintenance budget	- Delicate transport (<u>e.g.</u> non-urgent ambulance service) needs road quality for route selection	- Self-driving vehicles need road profile info for safe & comfortable navigation:
- Worldwide yearly cost of bad roads is estimated to be: ??? (accidents, damaged vehicles, back injury,)	- Road digitization documents evolution of road condition for road exploitation under consignment	- <u>SatNav</u> feature: From A to B in most comfortable way	 Pothole avoidance Speed reduction at bumps Curbstone detection Platform localization for shuttles & buses
- Human, visual, on-site road inspection is slow and dangerous	- Acceptance of road (re)construction	- Government aiming to increase of standard of living	

True solid state lidar