

## Crack Detection from High-Quality Surface Images

**David Malmgren-Hansen** Head of R&D, Greenwood Engineering



# Project

- The advances of Deep Learning algorithms makes them interesting for complex data analysis tasks to reduce manual labor.
- Can we use DL for Crack Detection?
- Problem: DL requires large amount of training data (images + labels)
- Vast amount of data has already been analyzed manually. Can this be used for DL training?
- Convolutional Neural Networks (CNN), a branch of DL is preferred in Image Analysis, among other disciplines.





# Surface Imaging System

#### System specifications example

- 2 Linescan cameras + 64 LED lamps
- 4 m measuring width
- 1mm x 1mm per pix.
- Pulsed light system, 1 pulse/mm, <30kHz</li>
- One continuous image of the surface
- Driving speed <100 km/h</li>
- Red light source
  - -> To be independent of sunlight
- Homogenous light profile









# Crack Detection

#### **Greenwood Block Crack-Dataset**

- <u>1.5M Images</u> 1358x991 pixels or appr. 1.3m x 1m, ~500 km of lane measurements.
- Blocks: 3 splits across x 1 row every ~1m
- Labels Crack, Patch, Pothole, Open-joint, Edge-crack
- Fraction of images where double checked
- Multi-label classification (non-exclusive classes), i.e. several damage types in the same grid cell.
- All visible cracks are marked, down to ~1mm.



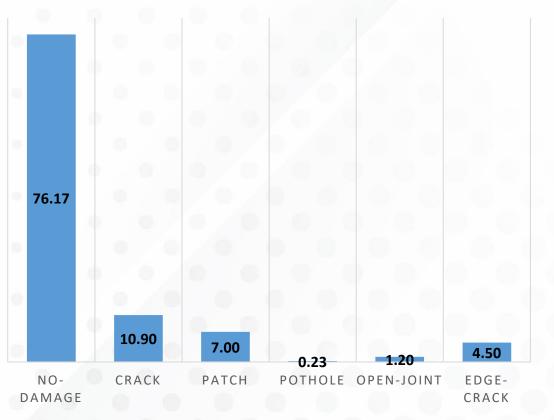


# Crack Detection

#### **Greenwood Block Crack-Dataset**

- <u>1.5M Images</u> 1358x991 pixels or appr. 1.3m x 1m, ~500 km of road measurements.
- Blocks: 3 splits across x 1 row every ~1m
- Labels Crack, Patch, Pothole, Open-joint, Edge-crack
- Fraction of images where double checked
- Multi-label classification (non-exclusive classes) , i.e. several damage types in the same grid cell.
- All visible cracks are marked, down to ~1mm.

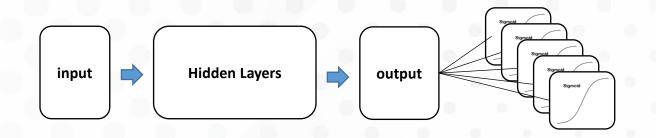
#### SAMPLE-DIST. PERCENTAGES







## **Classification types**



• Binary classification

Sigmoid: 
$$S(x) = \frac{e^x}{e^x + 1}$$

• Multiclass classification -> Mutual Exclusive Softmax:  $S(x)_i = \frac{e^{x_i}}{\sum_K e^x}$ , for K classes

• Multi-label classification-> Non-exclusive

Sigmoid: 
$$S(x_i) = \frac{e^{x_i}}{e^{x_{i+1}}}$$
, for  $i = 1 \dots K$  classes

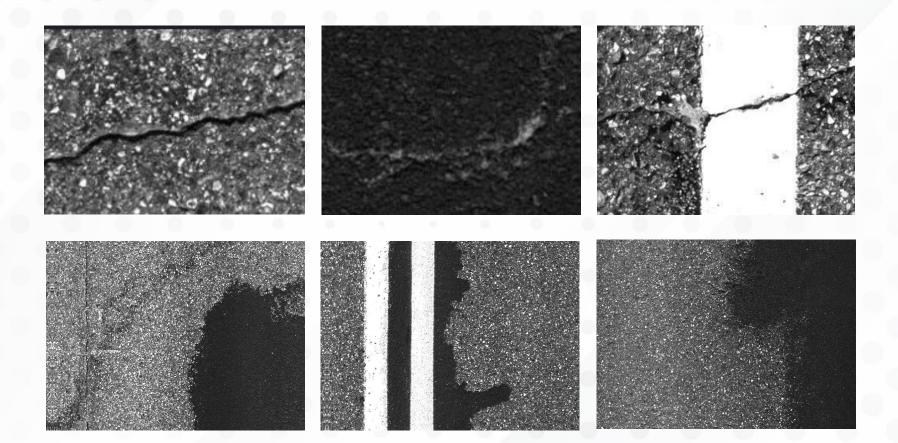




# **Dataset examples**

Cracks

Patch







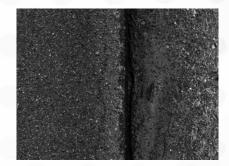
## **Dataset examples**

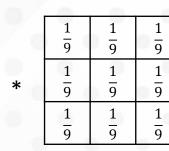
Open-joint Edge-crack Potholes

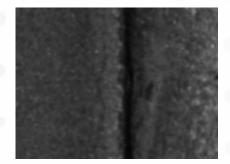




### **Convolutional Neural Network**







Convolution is a filtering operation (e.g. blur above)

Modern networks has

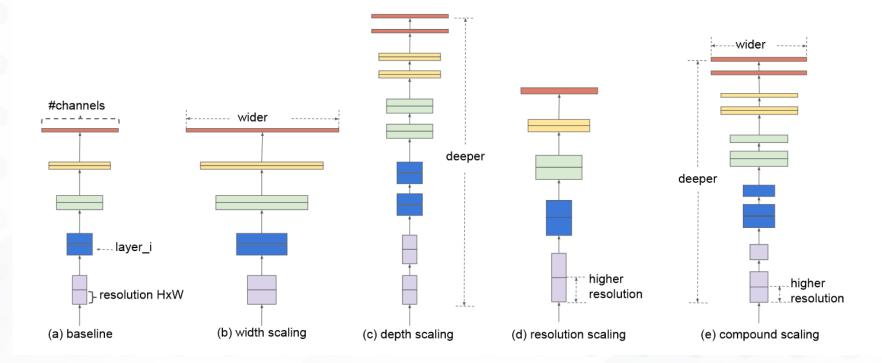
- thousands filters
- stacked in layers (< 100-200), i.e. filtered images are parsed into new filters.</li>
- This yields hundred of millions parameters

Although regularization is used, a lot of data is needed.





### **CNN Architectures**



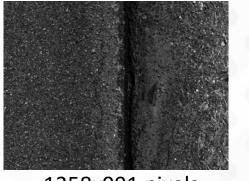
#### ImageNet models:

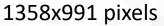
DenseNet, Xception, MobileNet, InceptionResNet, NasNet, EfficientNet

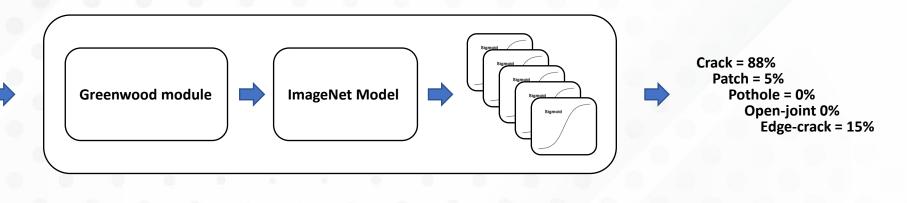




### **Customized model**







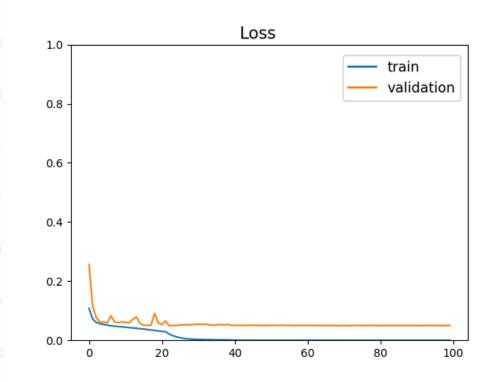
- The Greenwood Module consist of a convolutional layer and a subsampling layer.
- This is to reduce the large amount of computations needed in the ImageNet model which normally takes images of 300x300 pixels.
- Typical ImageNet models takes weeks to train on a non-cluster setup on ~1M images.





## Training

- Training time 3-15 days on fast PC (i9 CPU + 2xGPU-RTX3090)
- When model is trained it can process 420 km/h
- Oversampling under sampled classes
- Class weights -> put more "attention" to underrepresented classes
- ADAM optimizer + Learning rate decay







### **Results - Accuracies**

Accuracies below is calculated as,

$$Acc = \frac{TP + TN}{2}$$

This is important since No-damage is overrepresented, which is often the case in pavement surfaces.

Potholes must be oversampled more, possibly with data-augmentation.

| Balancing<br>Strategy<br><i>Labels</i> | Oversampling | Oversampling +<br>Class-weights |
|----------------------------------------|--------------|---------------------------------|
| crack                                  | 90,1         | 89,5                            |
| patch                                  | 93,4         | 92,2                            |
| pothole                                | 56,8         | 58,6                            |
| open joint                             | 81,9         | 84,1                            |
| edge crack                             | 89,5         | 87,9                            |
| Overall                                | 90,5         | 89,4                            |





### Results

- Co-occurrence matrix shows columns-wise percentages of a damage type occurring with the other damage types
- This means one damage tends to lead to other damages as well.

**Co-occurrence matrix** 

|            | crack | patch | pothole | open_joint | edge_crack |
|------------|-------|-------|---------|------------|------------|
| crack      | 100,0 | 48,5  | 67,5    | 22,9       | 95,8       |
| patch      | 33,2  | 100,0 | 58,2    | 11,7       | 31,4       |
| pothole    | 1,3   | 1,6   | 100,0   | 0,3        | 1,4        |
| open joint | 2,8   | 2,1   | 1,7     | 100,0      | 0,3        |
| edge crack | 40,4  | 19,3  | 31,7    | 0,9        | 100,0      |

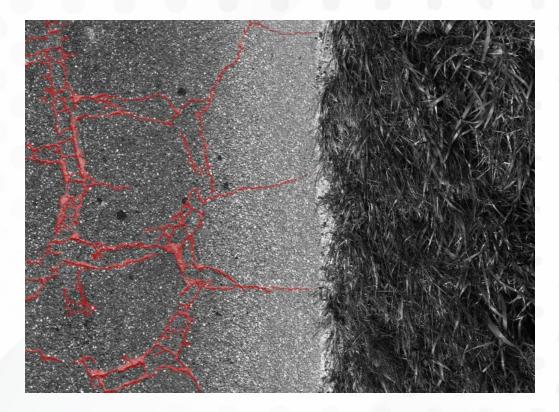
• When we overall categorize a block for a damage, we capture most damages.

| crack | patch | pothole | open_joint | edge_crack |
|-------|-------|---------|------------|------------|
| 89,1  | 93,7  | 89,7    | 78,8       | 90,9       |





#### Next step



#### **Greenwood Crack Segmentation Dataset**

Fine grained information:

- Pct damage per cell
- Width (max, mean std)
- Orientation (Longitudinal/Transversal/Both)
- Monitor individual cracks over time





### Conclusion

- Deep Learning achieves high accuracy on detection of surface damages.
- Challenge: Highly imbalanced data
- Oversampling and weight decay can help, but..
- ... more samples are needed for underrepresented classes.
- As overall accuracies are high, and FP are low the model is very good for screening large networks and find AOIs.
- Adding more classes is easier with a model to prescreen AOI.



