TPF-5(345/463): Managing the Pavement Properties for Improved Safety

Final Report VTRC 22-R14 Pavement Friction Management Program Demonstration

Presentation Outline

- Objective
- Surveyed Network
- Analyzed Network
- ✓ Model Development and Economic Analysis
- Statewide Results
- Findings, Conclusions and Recommendations

Advancing Transportation Through Innovation http://vtrc.virginiadot.org/PubDetails.aspx?PubNo=22-R14

2

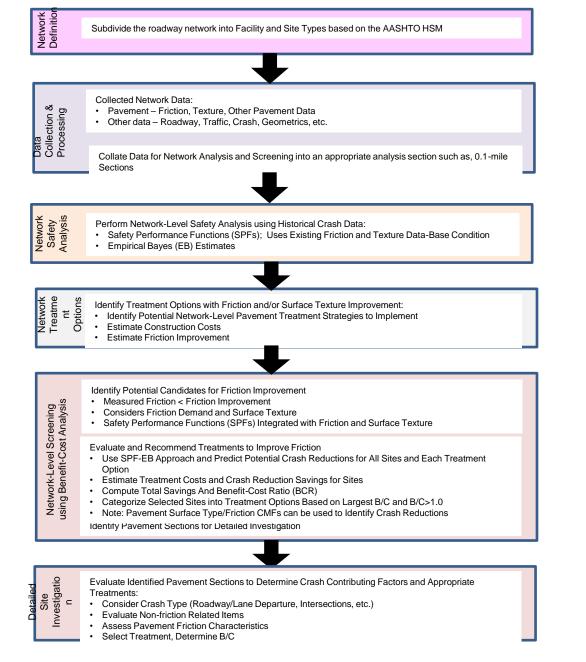
Pavement Friction Management Program Pilot Demonstration

Objective:

To continue the development and implementation of a continuous data-based pavement friction management (PFM) program by exploring use of other important pavement characteristics and applying the program to a larger geographic region, referred to as the Corridors of Statewide Significance (COSS).

VDOT Mini SCRIM

8 38


VDOT

R19484

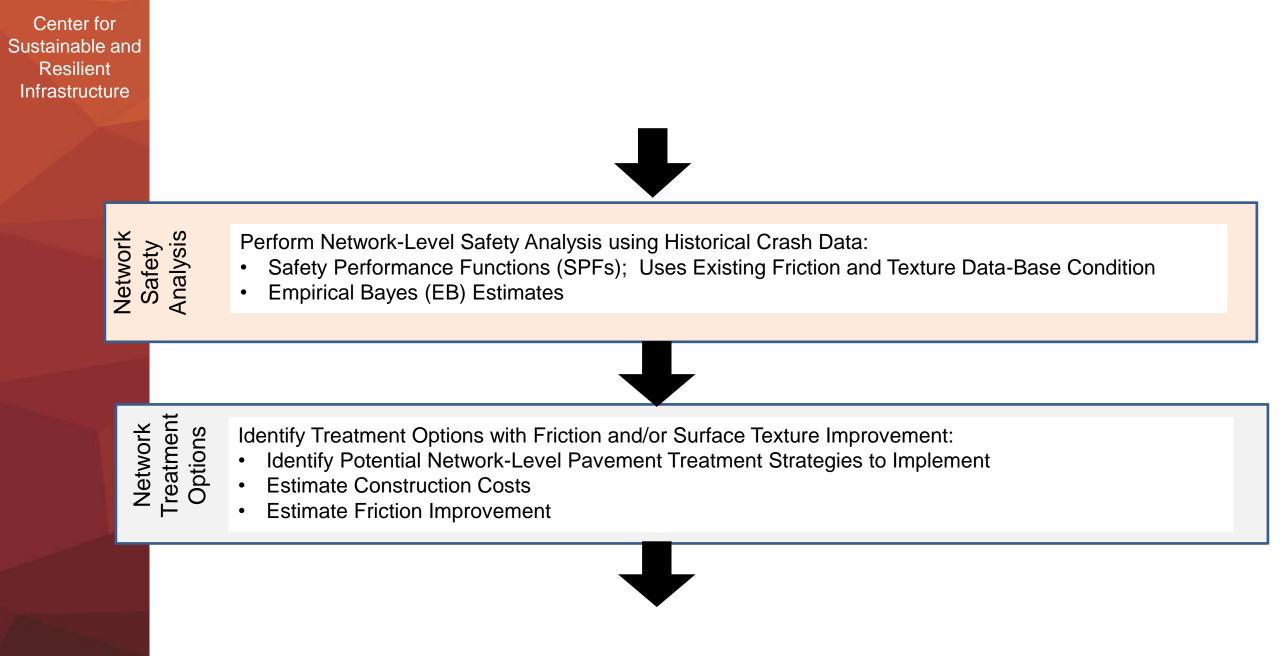
3

Center for Sustainable and Resilient Infrastructure

Example of a Pavement Friction Management Program

Example of a Pavement Friction Management Program

Subdivide the roadway network into Facility and Site Types based on the AASHTO HSM


Data Collection & Processing

Network Definition

Collected Network Data:

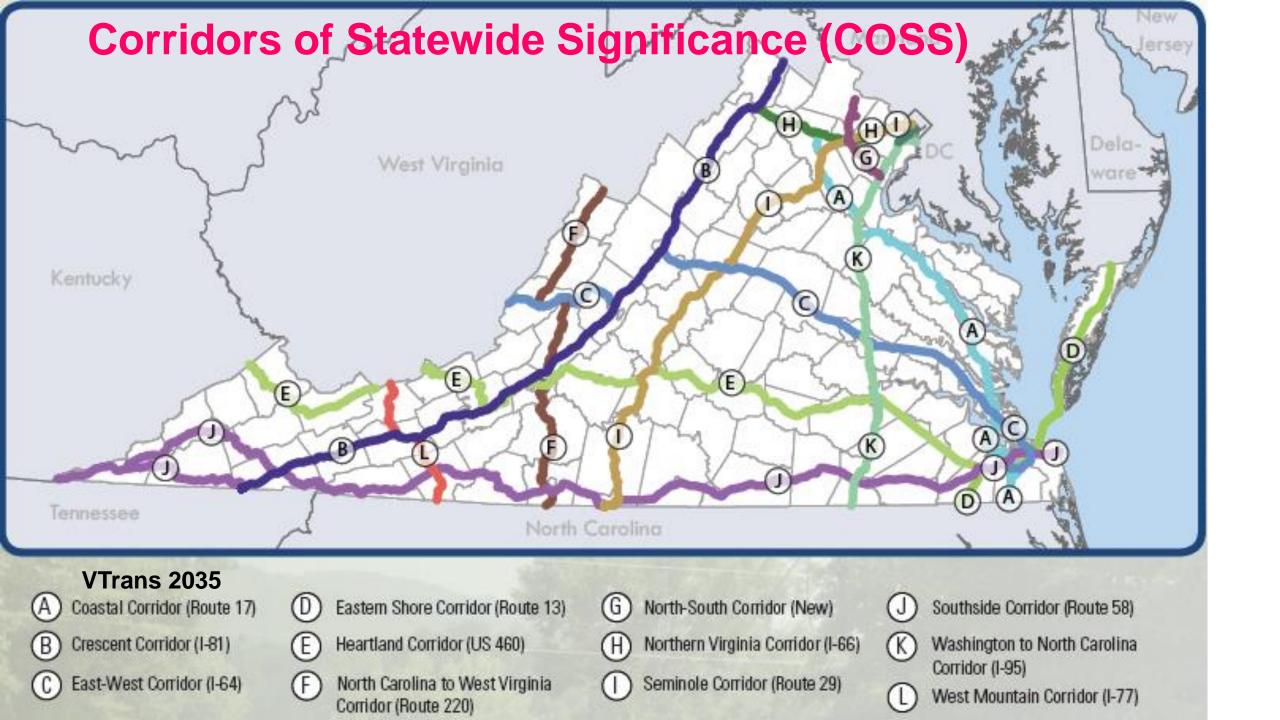
- Pavement Friction, Texture, Other Pavement Data
- Other data Roadway, Traffic, Crash, Geometrics, etc.

Collate Data for Network Analysis and Screening into an appropriate analysis section such as, 0.1-mile Sections

> Network-Level Screening using Benefit-Cost Analysis

Identify Potential Candidates for Friction Improvement

- Measured Friction < Friction Improvement
- Considers Friction Demand and Surface Texture
- Safety Performance Functions (SPFs) Integrated with Friction and Surface Texture


Evaluate and Recommend Treatments to Improve Friction

- Use SPF-EB Approach and Predict Potential Crash Reductions for All Sites and Each Treatment Option
- Estimate Treatment Costs and Crash Reduction Savings for Sites
- Compute Total Savings And Benefit-Cost Ratio (BCR)
- Categorize Selected Sites into Treatment Options Based on Largest B/C and B/C>1.0
- Note: Pavement Surface Type/Friction CMFs can be used to Identify Crash Reductions

Identify Pavement Sections for Detailed Investigation

Detailed Site Investigation Evaluate Identified Pavement Sections to Determine Crash Contributing Factors and Appropriate Treatments:

- Consider Crash Type (Roadway/Lane Departure, Intersections, etc.)
- Evaluate Non-friction Related Items
- Assess Pavement Friction Characteristics
- Select Treatment, Determine B/C

District	Measured	Surveyed	Analyzed	
1 Bristol	892.2	62.3	47.0	CoSS PFM Network
2 Salem	841.0	794.4	590.4	
3 Lynchburg	544.1	522.9	355.3	
4 Richmond	1,249.5	1,224.0	881.6	
5 Hampton Roads	1,245.7	1,172.7	626.6	
6 Fredericksburg	473.7	470.8	342.9	
7 Culpeper	470.7	413.8	254.9	
8 Staunton	737.2	664.4	449.0	
9 Northern Virginia	546.0	471.3	282.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Total	7,000.2	5,796.6	3,830.4	
		۶ 1		$\frac{7}{6}$

	District	Surveyed	Analyzed
1	Bristol	62.3	47.0
2	Salem	794.4	590.4
3	Lynchburg	522.9	355.3
4	Richmond	1,224.0	881.6
5	Hampton Roads	1,172.7	626.6
6	Fredericksburg	470.8	342.9
7	Culpeper	413.8	254.9
8	Staunton	664.4	449.0
9	Northern Virginia	471.3	282.7
	Total	5,796.6	3,830.4

CoSS Surveyed & Analyzed Networks

North Connergen

Statewide

Network Analysis

Surveyed Network: 5,796.6 miles or 10,407.3 lane-miles

Analyzed Network

	Miles	Lane-Miles	
DGAC	2,184.6	5,034.6 (55.8%)	
THMACO	66.6	157.8 (1.7%)	
SMA	965.4	2,382.5 (26.4%)	
MICRO	452.0	1,006.6 (11.2%)	
РССР	161.8	439.7 (4.9%)	
TOTAL	3,830.4	9,021.2	
Obcowwod Crock	hag. 67 107		

Advancing Transportation Through Innovation **Observed Crashes: 67,492**

Model Development & Economic Analysis

SPF Equation

$$\lambda_i = \exp\left(-0.005 + \sum_{j=1}^k \beta_j N_{ij}\right)$$

where $\lambda_i = \text{Expected number of crashes for section } i$. $\beta_0 = \text{Intercept parameter (-0.005)}$ $\beta_j = \text{Parameters for } j \text{ independent variables.}$ $\mathbf{N}_{ij} = \text{Value of model variable } j \text{ for section } i.$

Safety Performance Function (SPF)

Model Variables	β	<i>p</i> -value	Model Variables	β	<i>p</i> -value
Intercept	-0.005	1.00	Interaction Term(s):		
ln(AADT)	0.266	0.00	SFN40 \times Route Type	0.039	0.00
Friction (SFN40)	-0.094	0.00	SFN40 \times Texture	-0.042	0.00
Texture (MPD-mm)	1.482	0.02	SFN40 × Grade (%)		
Divided	-0.114	0.79	SFN40 × Cross-slope (%)	-0.005	0.01
Intersections & Ramp Access Points	1.474	0.00	SFN40 × Curvature $(1/m)$	26.741	0.00
Route Type	-1.407	0.00	SFN40 \times Intersections/Ramp Access	-0.011	0.04
Pavement Surface Mix			SFN40 \times Divided Roadway	0.025	0.00
SMA	-0.982	0.00	SFN40 \times Number of Travel Lanes	0.010	0.01
MICRO	1.821	0.00	SFN40 \times Pavement Surface Mix		
PCCP	-1.538	0.00	$SFN40 \times SMA$	0.015	0.03
Grade (%)			$SFN40 \times MICRO$	-0.037	0.00
Cross-slope (%)	0.295	0.00	$SFN40 \times PCCP$	0.019	0.06
Curvature (1/m)	-991.525	0.00			
Number of Travel Lanes	0.057	0.77			

Note: Indicator variable reference value for route type is primary and pavement surface mix is DGAC.

Economic Analysis

Step 1: Calculate the Number of Crashes <u>**Untreated</u></u> (estimated) & <u>Treated**</u> (Predicted)</u>

Compute **SPF_{Treated}** using the value of friction listed in the table:

Treatment Ontion	SFN40			
Treatment Option	Improvement			
DGAC	60			
SMA	55			
MICRO	65			
PCCP with CDG	60			
HFST	80			

SPF_{Treat} × EB_{Untreat} Center for **Step 2:** Compute EB <u>Treated</u>: EB_{Treat} = Sustainable and **SPF**_{Untreat} Resilient Infrastructure **Step 3:** Predicted Crash Reduction: $CR = EB_{Untreat} - EB_{Treat}$ **Step 4:** CR Savings = CR × \$146,304 Crash 2016 Comprehensive Network **Observed Crashes** Unit Costs **Crash Costs** Severity Κ \$11,295,402 (0.5%)\$1,084,358,592 96 Α 779 (4.4%)\$654,967 \$510,219,293 В \$198,492 (21.9%)\$765,385,152 3,856 С 553 \$125,562 (3.1%)\$69,435,786 О (70.0%)\$11,906 \$146,729,544 12,324 Total \$2,576,128,367 17,608 Advancing Transportation $$2,576,128,367 \div 17,608 = ($ 146,304 Average Cost/Crash: Through Innovation 19

Economic Analysis

Step 5: Estimate Treatment Costs: [Cost / Lane / 0.1-mile] × Lane Count

Treatment Option	Cost per Lane-0.1 mi		
DGAC	\$6,588		
SMA	\$8,525		
MICRO	\$1,870		
PCCP with CDG	\$4,224		
HFS	\$19,000		

Economic Analysis

Step 6: Treat sections with $B/C \ge 1.0$: B/C =

CR Savings

Estimated Treatment Cost

Treatment Selection Criteria

• Interstate:

- i. SMA: Asphalt Surfaces
- ii. PCCP CDG: PCCP Surfaces
- Primary:
 - i. Latex (Micro): SMA & DGAC < 6 years ii. PCCP CDG: PCCP
 - iii.DGAC: Latex (Micro) Surfaces
 - iv.Surfaces > 5 years
 - > SMA: SMA
 - DGAC: DGAC

Statewide Economic Analysis Results

Savings		Number of Treated Sections						Predicted Crash	Treatment	Total
per sections >	DGAC	THMACO	SMA	Micro	CDG	HFS	Total	Reductions	Cost	Savings
\$5.0 M	4	0	0	2	0	0	6 (0.02%)	269 (0.40%)	\$83,683	\$39,281,997
\$4.0 M	1	0	0	3	0	2	6 (0.02%)	180 (0.27%)	\$129,042	\$26,890,772
\$3.0 M	8	1	1	10	0	5	25 (0.07%)	594 (0.89%)	\$494,300	\$85,752,551
\$2.0 M	28	11	6	23	0	18	86 (0.22%)	1,413 (2.12%)	\$1,746,113	\$204,446,152
\$1.0 M	158	59	67	68	1	101	454 (1.19%)	4,625 (6.96%)	\$11,136,212	\$613,602,926
\$0.5 M	301	160	168	171	4	328	1,132 (2.96%)	5,867 (8.82%)	\$28,413,626	\$782,176,426
Total	500	231	242	277	5	454	1,709 (4.46%)	12,949 (19.48%)	\$42,002,975	1,752,150,825

Statewide Findings

- 1. 56% of Network is DGAC.
- 2. Around 53% of the Analyzed Network had crashes.
- **3.** Friction was significant in most district SPF models.
- 4. Based on the SPF, the higher the treatment value of friction, the higher the predicted crash reduction.
- 5. Crash costs were derived with 2018 FHWA recommendations; treatment costs were provided by VDOT.

Statewide Conclusions and Recommendations

- The analysis found 1,709 sections with possible friction enhancements; predicted 12,949 crash reduction with total savings per section > \$500k.
- 2. Total treatment cost is \$42M with total savings of \$1.75B with a BCR of 43:1
- 3. VTTI will work with VDOT to develop procedures for both project- and network-level testing and reporting using Virginia's newly acquired CFME vehicle.

Sustainable and Statewide Conclusions and Recommendations

Center for

Resilient Infrastructure

- 4. VTTI will develop safety analysis and networking screening procedures with the Safety Office in the Traffic **Engineering Division.**
- **5.** VTTI will develop screening procedures that will address the use of speed, crashes, and other information to evaluate possible friction and macrotexture enhancement treatments.
- 6. VTTI will work with VDOT to create a data table and import procedures for friction and related safety data as collected on the VDOT network.

Questions

RICHMOND

00

edeleoni@vt.edu

