

Updating a State Pavement Condition Framework Using Relative Performance Targets

By

Alex Bernier, Connecticut Advanced Pavement Laboratory

Connecticut Transportation Institute

University of Connecticut

1

Iliya Yut, PhD & James Mahoney Connecticut Transportation Institute John Henault Connecticut Dept. of Transportation

- Problem Statement
- Proposed Alternate Concept
- Implementation
- Interpretation

- Existing National Rating Systems are too stringent for all routes
 - HPMS/MAP21 IRI thresholds for example
- Current State System had been developed during a period of rapid technological advances
- Review of TAMPs and Other State Reports suggested no 'gold standard' state exists for condition rating

Metric	Good	Fair	Poor
IRI (inches/mile)	<95	95-170	>170
Rutting (inches)	<0.20	0.20-0.40	>0.40
Cracking (%)			
- Asphalt	<5	5-20	>20
- Jointed Concrete	<5	5-15	>15
- Continuously Reinforced Concrete	<5	5-10	>10
Faulting (inches)	<0.10	0.10-0.15	>0.15

CT DOT TAMP. (page 2-13) https://portal.ct.gov/-

/media/DOT/documents/dplansprojectsstudies/plans/Highway-Transportation-Asset-Management-Plan-FHWA-Certified-072418.pdf?la=en

> The overall PCI is a weighted average of the following metrics, with each metric weight shown in parentheses:

- IRI (10%)
- Rutting (15%)
- Cracking (25%)
- Disintegration (30%)
- Drainage (20%)

SOGR

Pavement Condition:

PCI Ratings and State

of Good Repair

Good

Fair

Poor

9.0

8.0

7.0

6.0 5.0

4.0

3.0

2.0

1.0

CT DOT Maintains roadways meeting all functional classifications of HPMS.

It is unrealistic to hold all these roadways to the same pavement performance metrics.

- Continuous Paving vs. Intersection-Restricted Closures
- Utilities / Driveways
- Grading for Intersections, turn lanes
- Access to subsurface utilities by others
- User experience is different (speeds, intersections, etc.)

Diagram of data streams for the state's existing pavement rating system

Table 2. Summary of the ANOVA evaluation of the influential factors of distresses.

	Log10 (F) for Influential factors			
Distress Indicators	Age Group	Pavement Type	Functional Class	
Ride Quality (MRI)	3.2	1.0	3.1	
Rutting (RUT)	3.6	1.4	2.1	
Cracking (ALLCRACK)	3.7	1.78	1.79	

Existing Data Streams over time.

PPI Sub-Index Calculation

Predictor (x=Age)	Response (y=Distress Sub-Index)	Functional Classes	Pavement Type	Model Type	Model Formula
Age ¹²	MRI12	1&2	Flex, Comp	exponential	y=a*e ^{bx}
Age345	MRI345	3-5	Flex, Comp	exponential	y=a*e ^{bx}
Age	RUT	1-5	Flex, Comp	exponential	=a*e ^{bx})
AgeFlex	WP_CrackingFlex	1-5	Flex	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f
AgeComp	WP_CrackingComp	1-5	Comp	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f
AgeFlex	NWP_CrackingFlex	1-5	Flex	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f
AgeComp	NWP_CrackingComp	1-5	Comp	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f
AgeFlex	ALL_CrackingFlex	1-5	Flex	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f
AgeComp	ALL_CrackingComp	1-5	Comp	5-degree polynomial	$y=a^{*}x^{5}+b^{*}x^{4}+c^{*}x^{3}+d^{*}x^{2}$ e*x+f

CAP LAB	CTI Connecticut Transportation	UCONN	CONNECTICUT NOLLEL KO
	Institute	SCHOOL OF ENGINEERING	OF TRANSP

Formula for Mean	RMSE	R-Square
58.485e ^{0.0343Age}	8.74	0.85
99.686e ^{0.0272Age}	4.79	0.96

		•	mean RUT	
		•••••	Expon. (mean RUT)	
1	0	15	20	25
Su	rface A	ge [years]		

Formula for Mean	RMSE R-Squa	
0.0956e ^{0.0376Age}	0.01	0.95

SCHOOL OF ENGINEERING

Formula for Mean	RMSE	R-Square
0.0001Age ⁵ - 0.0083Age ⁴ +0.16Age ³ - 1.11Age ² +4.07Age-1.92	2.88	0.98
0.00004Age ⁵ - 0.0025Age ⁴ +0.06Age ³ - 0.47Age ² +2.34Age-0.16	1.36	0.98

Formula for Mean	RMSE	R-Square
0.0002Age ⁵ - 0.0109Age ⁴ +0.22Age ³ - 1.596Age ² +6.44Age- 2.08	3.82	0.99
0.00015Age ⁵ - 0.006Age ⁴ +0.063Age ³ +0 .23Age ² -1.88Age+5.36	2.80	0.97

Formula for Mean	RMSE	R-Square
0.0001Age ⁵ - 0.0038Age ⁴ +0.026Age ³ + 0.33Age ² -1.68Age+6.27	1.41	0.98
0.0001Age ⁵ - 0.0024Age ⁴ - 0.05Age ³ +1.63Age ² - 6.81Age+14.38	2.95	0.99

PPI SubIndex (y)	Formula for Mean	RMSE	R-Square
PPI_MRI12	y=20-ln(x/58.485)/0.0343	0.65	0.98
PPI_MRI345	y=20-ln(x/99.686)/0.0272	0.47	0.99
PPI_RUTall	y=20-ln(x/0.0956)/0.0376	0.66	0.99
PPI_WPflex	-4.1E-7*x ⁵ +5.5E-5*x ⁴ -0.003x ³ +0.079x ² -1.308x+20.85	0.28	0.99
PPI_NWPflex	$5.4E-6*x^{5}-4.4E-4*x^{4}+0.011x^{3}-0.088x^{2}-0.911x+21.06$	0.20	0.99
PPI_ALLCRACKflex	-2.9E-8*x ⁵ +5.9E-6*x ⁴ -5.0E-3*x ³ +0.023x ² -0.759x+21.45	0.25	0.99
PPI_WPcomp	-4.2E-6*x ⁵ +3.8E-4*x ⁴ -0.013*x ³ +0.228x ² -2.196x+22.75	1.56	0.95
PPI_NWPcomp	4.4E-6*x ⁵ -3.6E-4*x ⁴ +7.2E-3*x ³ +0.003x ² -1.48x+24.00	1.98	0.92
PPI_PPI_ALLCRACKcomp	-4.1E-7*x ⁵ +6.6E-5*x ⁴ -3.9E-3*x ³ +0.112x ² -1.68x+25.44	1.28	0.97

 $PPI_{n} = \min_{n} (PPI[MRI_{12}] + PPI[MRI_{345}], PPI[RUT], PPI[WP_Crack_{Flex}] + PPI[WP_Crack_{Comp}], PPI[NWP_Crack_{Flex}] + PPI[NWP_Crack_{Comp}])$

PPI[MRI345] vs. Age for Portions of Route 44 (within log mile

Transportation Institute

SCHOOL OF ENGINEERING

Scatter plot with 0.5-mile trends of PPI Sub-Indices for Route 9 (log mile 0-41)

Predicted and target PPI for MRI_{12} (left) and MRI_{345} (right).

Predicted and target PPI for RUT

PPI_WPflex_17

Predicted and target PPI for WP_Cracking_{comp} (left) and WP_Cracking_{flex} (right).

PPI_WPflex_17

Predicted and target PPI for WP_Cracking_{comp} (left) and WP_Cracking_{flex} (right).

SCHOOL OF ENGINEERING

Distribution of deltaPPI

Governing Subindices for Over- and Underperforming Sections in 2017

Breakdown of 2017 network performance by surface age in centerline miles

Notes:

- Currently validating data against more recent years of data
- Determining best approach to "deal" with rutting, since statewide data suggests minimal rutting distresses in general
- Ensuring the confidence intervals used in PPI models are adequate
- Determining 'action values' for PPI for state engineers to work from to utilize this system for asset prioritization.

Thank You!

