Task 16: Ride Measurement Experiment

September 21, 2006 Steve Karamihas

University of Michigan

Transportation Research Institute

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

Smoothness Thresholds

- How smooth is smooth enough?
 reduction of truck dynamic loading
 - reduction of operating costs
 - user perception of ride quality
- Balance smoothness thresholds against added construction costs.

Truck Suspension Properties

Suspension "Stiffness"

Vertical Suspension Load (lbs)

Suspension "Stiffness"

Vertical Suspension Load (lbs)

User Perception of Ride

- We are looking for the threshold of perception, annoyance:
 - Often expressed as a limit on acceleration
 - Suspension friction may be a factor
 - Internal sources of vibration are important

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

The Experiment

- Measured accelerations at human/vehicle interfaces.
- Simultaneously measured profile.
- Tested 2 vehicles.
- Covered 33 pavements.

2005 Infinity Q56

2003 Altima

Sensor Layout

Seat/Buttock and Seat/Back

Floor/Feet

Steering Wheel/Hands

Profiler

Operator "Station"

Test Sections

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

Acceleration Trace

Seat/Buttock Vertical Accel. (g)

Resonance Frequencies

Resonance Frequencies

Power Spectral Density

Frequency Weighting

Frequency Weighting

Frequency Weighting

I-75 Northbound, MP 136

I-75 Northbound, MP 136

I-75 Northbound, MP 136

US-23 Southbound, MP 29

US-23 Southbound, MP 29

Left Spindle Vertical Accel. (g²/Hz)

8.2-ft Cycle Length

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

Relationship to IRI

Weighted RMS Seat/Buttock Accel. (g)

Relationship to IRI

Weighted RMS Seat/Buttock Accel. (g)

Quarter-Car Model

Relationship to the Golden Car

Relationship to Temporal Stats

Weighted RMS Seat/Buttock Accel. (g)

Relationship to Predicted Accel.

Weighted RMS Seat/Buttock Accel. (g)

Outline

- Smoothness Thresholds
- Measurement Equipment
- "Ride" Data Analysis
- Summary Results
- Further Work

Further Work

- Explain outliers (tuning, wheelbase filtering, etc.)
- Study localized roughness
- Compare to the second vehicle
- Predict truck dynamic loads
- Define a simulation study

Thank you.