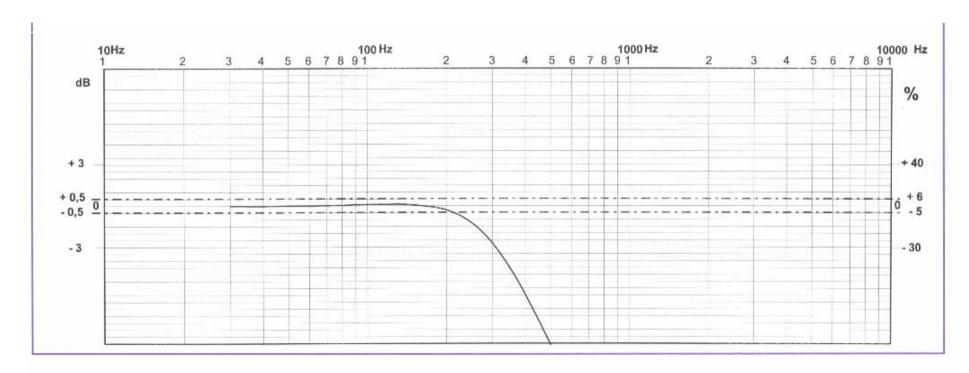


- Accelerometers
- Analog Electronics
- Sampling and Anti-Aliasing
- Signal Processing

- Accelerometers
 - Bridge-Based System

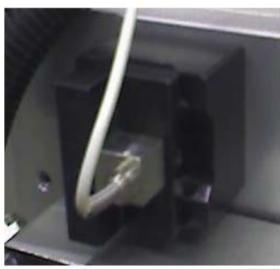
For specification -D


- Accelerometers
 - Temperature and Time Stability.

```
CERTIFICATE OF CALIBRATION
                  Other characteristics according to : EGCSS001U-PC
                                CALIBRATION DATA
1 Non linearity :±
                                1Hysteresis :±
                                                               1 CNL&H :± 1.00 %FSO
Th. zero shift : ± 2 mV/100°F
                                                 'Thermal Sens. Shift : ± 2.5 %/100°F
<sup>1</sup>Zero (typ.) : ± 15 mV
Ref. Temp. : 22 °C (72°F)
 Shunt Cal
                                         with:
                                                    ΚΩ
                                                              across :
               : 32.10 mV/g with Excitation : 15.0 V
 Sensitivity
                                                                Max. : 18.0 V
Natural frequency: 280 Hz
                                                             Damping: 0.64
 Input ohms : 1871
                                                         Output ohms: 1003
 Cal Equip.
               : M82
 Notes
```


Accelerometers

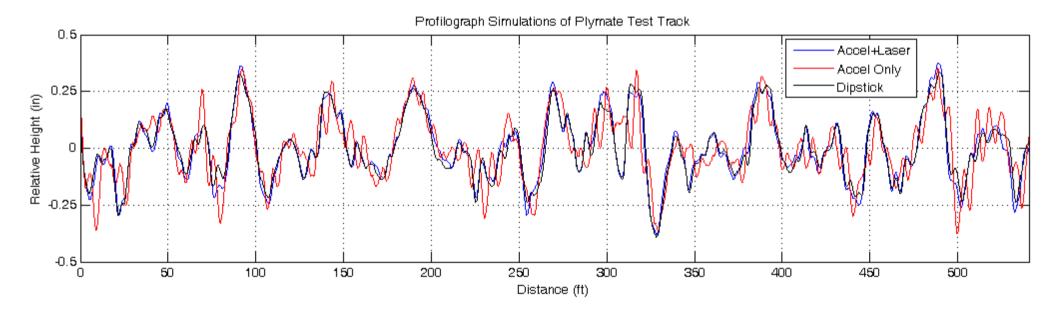
- Frequency Character
 - ($\mathcal{V} = \lambda * f$) $\mathcal{V} = 70$ mph, $\lambda = 0.5$ ft \rightarrow f = 205 Hz.



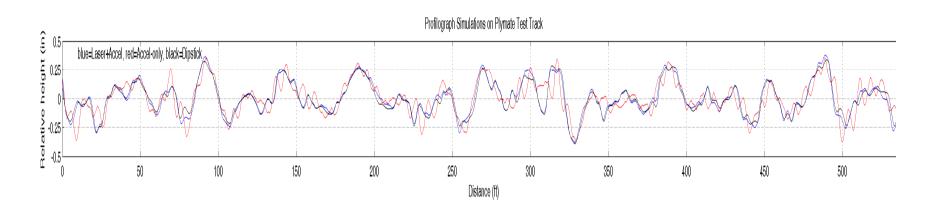
Accelerometers

- Calibration
 - Measure –g, 0, and +g
 - Achieved by rotating Accelerometer.

- Analog Electronics
 - Kept to a minimum
 - Analog Amplification
 - Offset Bias.
 - No filtering


- Sampling and Anti-Aliasing
 - Follow current principle in instrumentation
 - Place ADC as close to signal as possible!
 - No Anti-Aliasing Filter in the System
 - Use the cutoff of the sensor
 - Avoiding electronic phase distortion
 - Sampling rate set above Nyquist rate

- Signal Processing
 - High Pass Filter (Why?)
 - Small DC offsets need to be removed to avoid integrator run away.
 - Double Integration
 - Numerical Damping to eliminate run away
 - Double Precision
 - FIR Only: Allowing for Phase Correction



- Accelerometer Results.
 - Accelerometer versus LWP versus DipStick
 - Plot slope at ~ 45 degrees

Second Plot

PRI

Laser + Accel: 75.7 with 42 scallops Accel only: 74.0 with 44 scallops Dipstick: 71.1 with 44 scallops

Conclusion

- Accelerometer the major contributor to profile content.
- Laser secondary contributor to profile.
- Shouldn't RFQ for inertial profilers, be more concerned about the "inertial" portion of the system instead of the laser ranger.