VER HILLO

RORM

AROUND CURVES

OUTLINE

- ANALYSIS CONSTRAINTS
- WHY ITS AN ISSUE
- ACCELEROMETER GEOMETRY
- NORMAL ACCELEROMETER VALUES
- INFLUNCE OF COLLECTION SPEED
- WHAT CAN WE DO?

AS OPERATORS

AS EQUIPMENT DESIGNERS

CONDITIONS

1. SINGLE AXIS ACCELEROMETER

2. ACCELEROMETER AXIS & LASER AXIS ARE PARALLEL

CURVE & HILL PROBLEM-IT'S TYPICALLY <u>NOT</u>: A PROBLEM OF GEOMETRY

RIDE PROFILE is measured perpendicular to the average pavement grade - not to the horizon (EVEN IF A HORIZON PROJECTION IS USED – 10% GRADE = only 0.5% ERROR)

As long as the sensors are within 3 degrees of perpendicular to the pavement (van axles within 6" of average grade)

IF ITS NOT THE GEOMETRY

WHAT'S THE CAUSE of the PROBLEM?

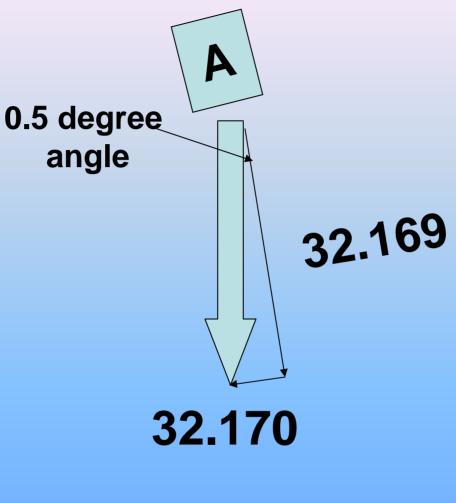
The ANSWER IS IN THE ACCELEROMETER

BIGGEST ACCELERATION

32.17 Ft. / sec²

THE PROBLEM with HILLS & CURVES:

ANGULAR CHANGE of the


ACCELEROMETER

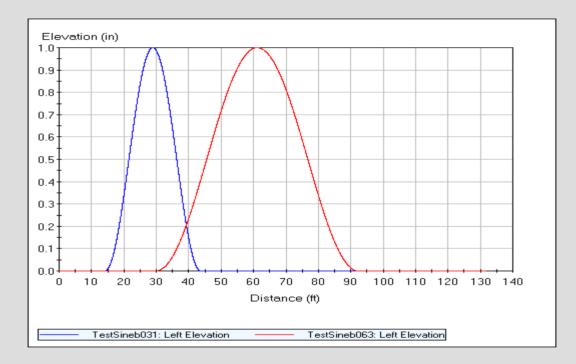
Causes of Angle Change

VEHICLE PITCH GRADE CHANGE HARD BRAKING/ACCELERATION VEHICLE ROLL ROUNDING CURVES INTERNAL WEIGHT SHIFT

Difference = 1 mg

RELATIVE MAGNUTUDE

ACCELEROMETER ERROR (1mg) Vs ROUTINE ROUGHNESS MEASUREMENTS



RPUG 2006

NO SUSPENSION MOVEMENT NO TIRE COMPRESSION ALL ENERGY AT THE TEST WAVELENGTH HUMPS ARE IN 33% OF THE PAVEMENT

ROUGHNESS SIMULATION ASSUMPTIONS

SINE WAVE HUMPS

63 FOOT Sine Roughness Hump

Measured at 50 ft/sec constant vehicle speed (30 MPH)

Vert.def. = {sin[(5.03*t)-1.5708]+1}/2 where t = time in hump

Max velocity = roughly 0.8 in/sec Max acceleration = roughly 1.3 in/sec²

Translates into ~ 0.1 ft/sec² = 0.003 g's or <u>3 mg's</u>

BOTTOM LINE

The possible error signal and the typical roughness measurements *can* be of **SIMILAR MAGNITUDE**

PROFILE MEASUREMENTS ARE WAVELENGTH DEPENDENT

Roughness 1.0 to 200 FEET long

OVER 200 FEET LONG

SPEED MATTERS

Typical Equipment Requirements

Minimum operating speed of 20mph (30ft/sec)

Collecting 60% amplitude data @ 300 ft wavelength

<u>Imply</u>

Roughly 15sec decay rate in the derived elevation

ACTIONS of OVER 30 sec ARE NOT a PROBLEM

DISTANCE MATTERS

Typical FILTRATION

Collecting 60% amplitude data @ 300 ft wavelength

Implies

AFTER 600 FT. INTO A FEATURE,

(Constant Curve or Grade)

THE OUTPUT IS NOT AFFECTED

SO WHAT DO WE DO?

MINIMIZE:

1.THE SIZE of the CHANGE2.THE RATE of CHANGE

GOOD COLLECTION GUIDELINES:

SIZE of CHANGE:

1. IF YOU CAN FEEL IT – IT'S TOO BIG! (A 1 inch VEHICLE LEAN is OVER 0.5 DEGREES) *INSTALL BIG ROLL BARS*

RATE of CHANGE:

IDEALLY STAY:

- 1. On a constant grade for MORE than 30sec. or over 600 ft.
- 2. In a constant curve radius for the same period

CURVES

VEHICLE *ROLL* IS MAIN ISSUE

DRIVE AS <u>SLOWLY</u>AS POSSIBLE

CONSISTENT WITH:

1.SAFETY

2.MINIMUM PROFILER SPEED

SMOOTH DRIVING IS THE KEY

DRIVE WITH RAW EGGS BETWEEN:

YOUR FEET & the PEDLES
YOUR FINGER TIPS & the WHEEL
YOUR "CHEEKS" & the SEAT

THE FUTURE?

PITCH & ROLL COMPENSATION ALTERNATE VERTICAL MOTION DETECTOR Other New Technology

