OHIO DOT Bridge Rideability Investigations & Spec Development

by Brian L. Schleppi

RPUG 2006

Des Moines, Iowa September 21, 2006

Overview

- Impacts of Poor Ride at Bridges
- How Bridges affect Network Rideability
- Causes of Poor Ride at Bridges
- Steps ODOT is taking to improve ride across Bridges
 - Other Policy/Design/Construction Issues

Questions

How does Ohio compare to other states?

- 35th in geographical size
- 4th largest interstate mileage
- 2nd highest bridge inventory
- 4th largest freight volume
- 4th in truck VMT
- 5th in total VMT

Highway Freight Density

Impacts of Poor Bridge Ride

User Costs

- User Satisfaction
- Vehicle Wear/Damage
- A Cargo Damage
- + Freight Costs
- ♦ Safety
 - handling/grip

Agency Costs

- Pavement Life
- 🕈 Bridge Life
- Maintenance Costs
 - Snow/Ice Removal
 - ↓ efficiency
 - + costs

Understanding the problem

Support

Communicating

Old Dilemma: Bridge Ride

- We experience poor ride over most of our bridge encounters
- Bridges 2 ½ X rougher than pavements by IRI

Bridges increase system IRI by 7.5%

- Bridges are less than 4% of system by length
- Smoothness specs on decks & pavement
 - No smoothness specs on transition

2001 Ohio Interstate System

Bridge Roughness Study Cumulative Frequency Distribution

Percentage

Desired State after Construction

CONTINUITY

Lack of Height Deviations through bridge encounter

Causes of Poor Ride Across Bridges

Decks are higher/lower than pavement

Causes of Poor Ride Across Bridges

Residual Camber in structure

lack of continuity

Causes of Poor Ride Across Bridges

Approach slab settlement Deep fill settlement

lack of continuity

Foundation

IN SITU SOIL Zone A

Leading Causes of Poor Ride Across Bridges

Discontinuity

- Decks higher/lower than surrounding pavement
- Settlement
 - Approach Slabs
 - Deep Fills
- Residual Camber in Spans

SUPPORT (it's the right thing to do!)

Internal

- Public expects/accepts rough ride at bridges?
- Big concern w/ bridges is safety/carrying the load not rideability
- Responsibility/Ownership: structures, construction, pavements, districts, etc?
- Everybody's plate is already full

SUPPORT (it's the right thing to do!) External

- Construction Industry: AC, PCC, Bridge construction industry
- Understanding down to the construction crew level
- Responsibility/Ownership: primes vs. subs; pavement vs. bridge
- Pride in final product

Communication

- Winter Construction conferences
 - Industry meetings
- Smooth Paving Workshop (March 2006)

"Rideability"

Seeing the surface of a highway the way motor vehicles do.

that means:

Collecting and interpreting road profiles.

International Roughness Index (IRI) Using profiles to simulate vehicle response (What the public "feels")

Computer Algorithm

10 ft Rolling Straightedge ***

02/17/2004

Current Situation/Specs

Smoothness specs (where's rideability?)

- 1. 10' Rolling Straightedge bridge decks
- 2. CA Profilograph pavement
- 3. No specification at transitions
- Need to consider Ride Quality in design, <u>construction</u>, maintenance processes

Exp Spec for New Projects or Major Rehabs (pave & bridge)

Can we build them smooth to begin with?

- Pilot Bridge Ride Specification
 - ODOT Structures
 - ODOT Construction
 - ODOT Pavement Engineering
 - Industry

(25' pavement, approach slab, deck, approach slab, 25' pavement) = ??? IRI

Exp Spec for New Projects or Major Rehabs (pave & bridge)

Each lane of encounter must have an IRI below 150 in/mile (proper threshold?)

(25' pavement, approach slab, deck, approach slab, 25' pavement) IRI <= 150"/mi</pre>

- Achievable communication
 - IRI from recent bridge projects
 - pre construction meetings
- Incentive max of 20% with IRI <= 80"/mi paid on price concrete in deck (carrot the right size?)

Exp Spec for New Projects or Major Rehabs (pave & bridge)

Considerations

- Length of bridge, (decks & approaches)
- What if bridge encounter isn't below 150 inches/mile?
- Incentive increments

Bridge spec link

Bridge Rideability

Policy/Design/Construction

"Ability to safely carry loads and good rideability are NOT mutually exclusive goals for our structures!"

Policy/Design/Construction ideas

- Future Maintenance
- Maximum allowable skew angles
- Closure pours
- Approach Slab Design
 - Integral/Semi-integral approach slabs
 - Lowering approach slabs 3-4"
 - Trapezoidal perpendicular to pavement
- Reconsider Taboos
 - 1. AC overlays
 - 2. Diamond grinding decks

Future Considerations

Evaluate initial pilot projects

- Baselength/continuous reporting methodology?
- Additional specs
 - 1. Just replacing decks/approach slabs
 - 2. Just resurfacing but not touching bridges
 - Problem with multiple overlays
- Can IRI specs improve bridge rideability? If so, do we gain anything else?

Brian.schleppi@ dot.state.oh.us

(614) 752-5745

Any questions?

unBEARable bridge roughness

RQ gun

Questions ??????

Brian L. Schleppi (614) 752-5745 brian.schleppi@dot.state.oh.us

THANK YOU