Paving the Way for Terrestrial Laser Scanning Assessment of Road Quality

Oregon Sta

Abby Chin, DEA Dr. Michael Olsen, OSU

RPUG: September, 26, 2012

School of Civil and Construction Engineering

Presentation Outline

- Project background and objectives
- Terrestrial Laser Scanning (TLS)
- Testing Results
- Conclusions
- Lessons learned and future work

Project Background

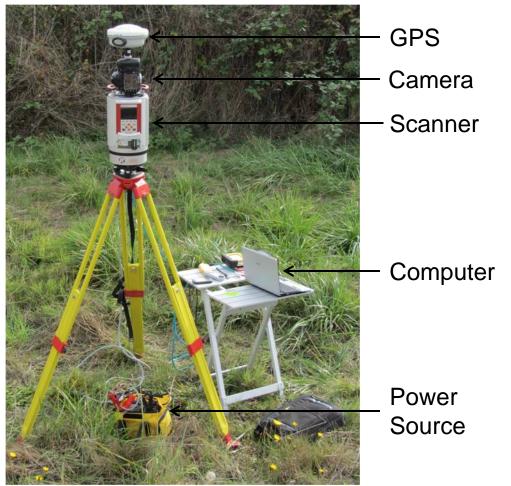
- ODOT is implementing IRI-based incentive/disincentive program
- Can AASHTO standards be achieved by Oregon DOT when comparing an inclinometer and inertial profiler?
- Previous difficulties with certification
 - Great repeatability results
 - Not meeting AASHTO accuracy requirements

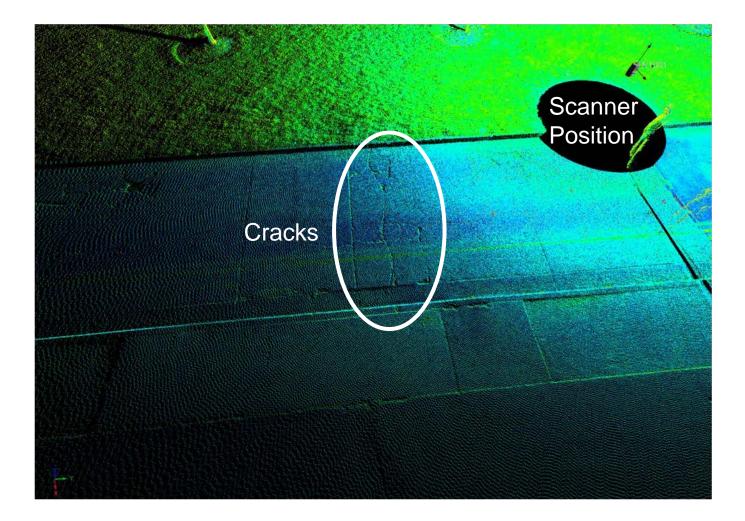
Objectives

- Verify that the test site is appropriate for certification
- Determine repeatability and accuracy of reference profiler (inclinometer)
- Recommend improvements to certification procedure
- Evaluate applicability of terrestrial laser scanning

Test Site – Albany, OR

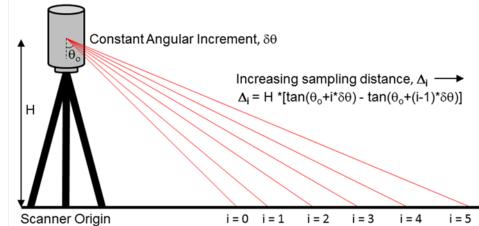
Test Site




Terrestrial Laser Scanning (TLS)

- LiDAR Light Detection and Ranging
- Time of flight system
- 0.2 in accuracy at 164 ft range
- Produces 3D point cloud
- Geo-referenced data

Point Cloud Example

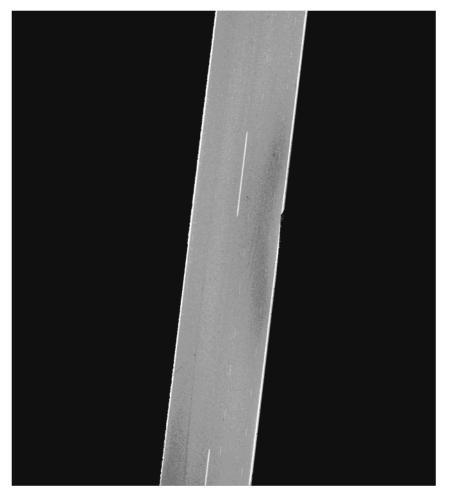

Advantages of TLS

- Data is collected across the entire roadway
 - Provides a full, as-built record
 - Enables analysis of:
 - Cross slopes
 - Localized depressions
 - Variations in roughness across the entire road
- Data is collected from the side of the road
 - Improves safety
 - Road can remain open

Disadvantages of TLS

- Objects can block line of sight of the scanner
- Increased field time
- Data processing requires training and time

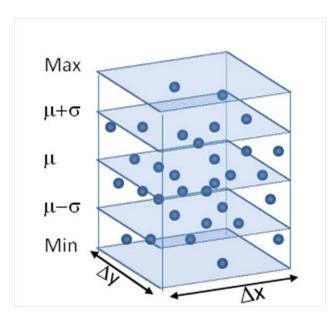
- Individual measurements accurate to ± 0.2 in
- Dark pavement does not reflect light well


Test Set Up for TLS

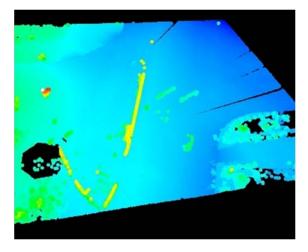
T < 13	1 ft →S < 131	. ft →T	S	т	S
<		528 ft			>
	- — — — —			— — Centerline Left Whee	
				Right Whe	
S	Т	S	т	s	
5					
5		Test Site		T – Target Loc	ation

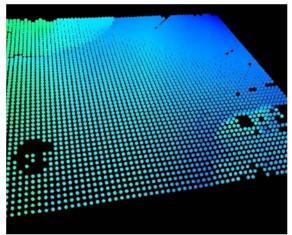
TLS Workflow

- Obtain 3D point cloud
 - Prune data to roadway
- Statistically filter data to specified spacing intervals
- Extract profile using tools in ArcGIS
- Input data into ProVAL

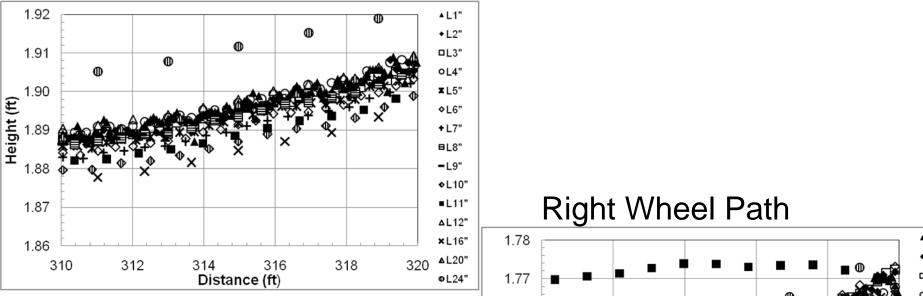


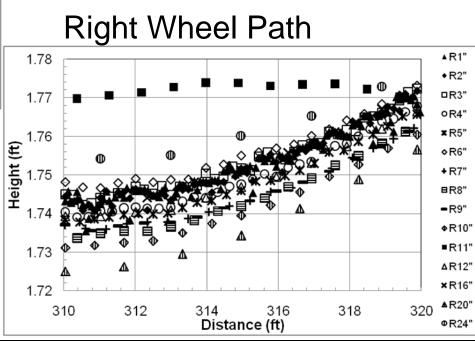
Statistical Filtering Process "Bin and Grid"


Sampling Intervals:


1-12, 16, 20, 24 in

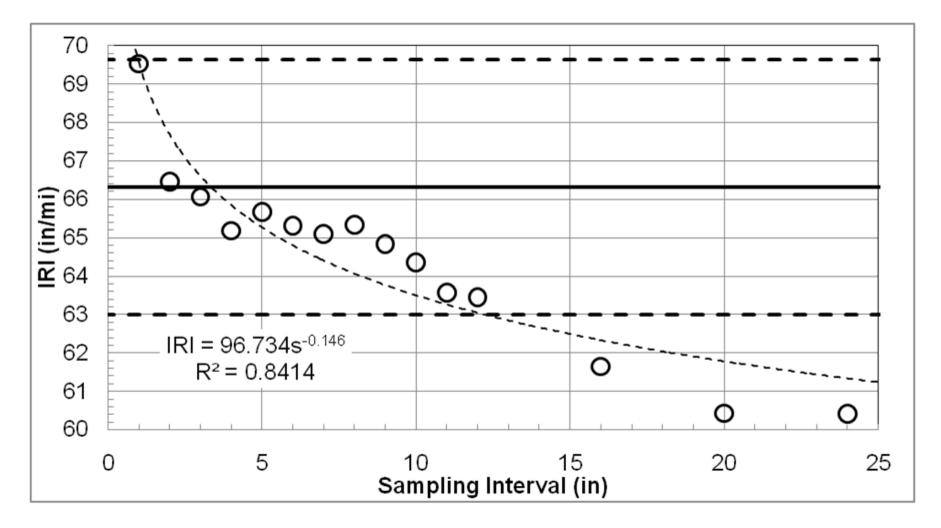
Oregon State



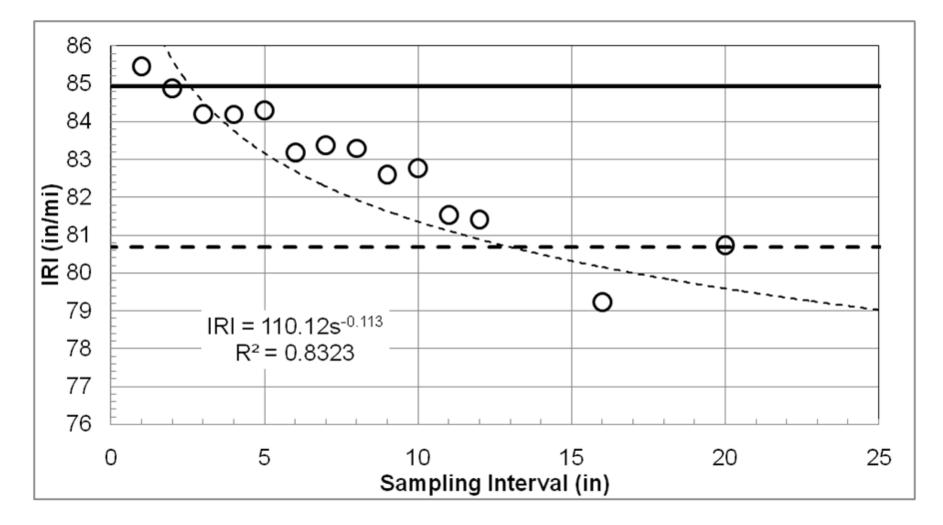


TLS Profile Comparison

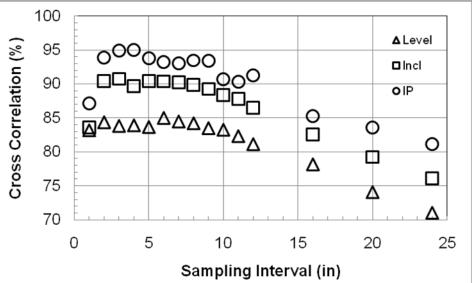
Left Wheel Path

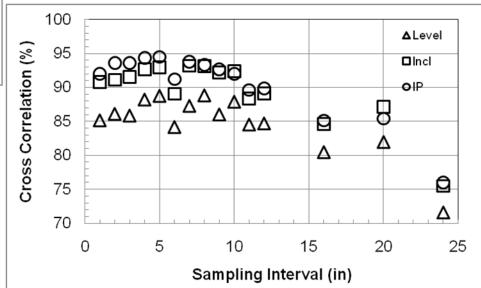


Compares profiles obtained from different sampling intervals

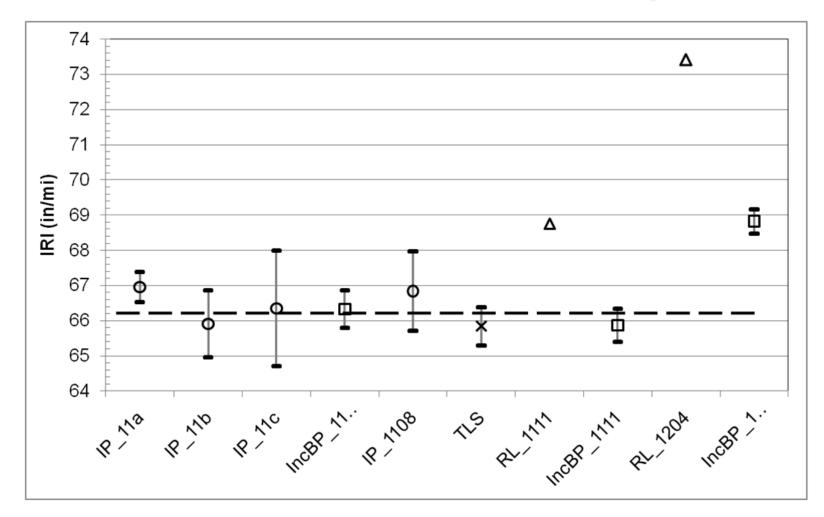


Left IRI Comparison from TLS

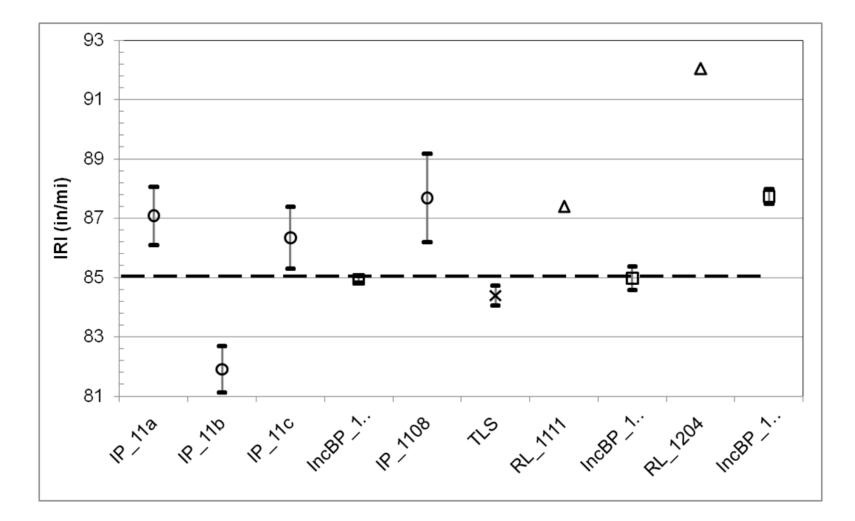

Right IRI Comparison from TLS


Cross Correlations from TLS

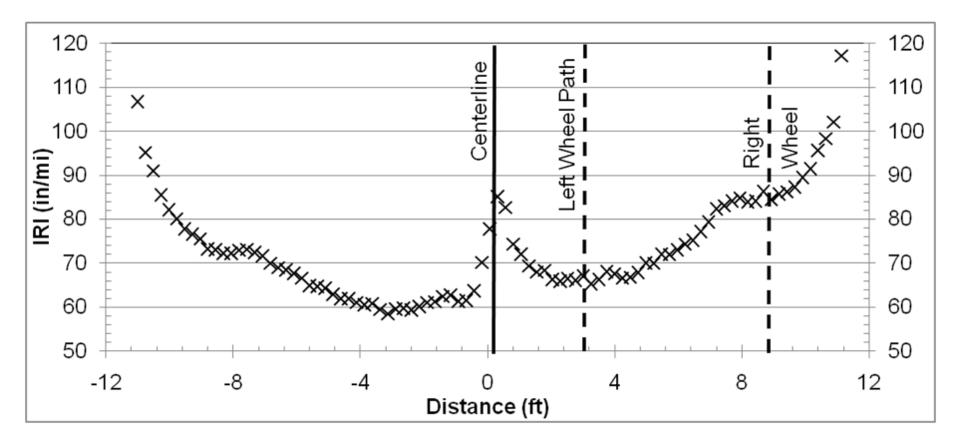
Left Wheel Path


Determined an optimal sampling interval: 2-5 inches

Right Wheel Path



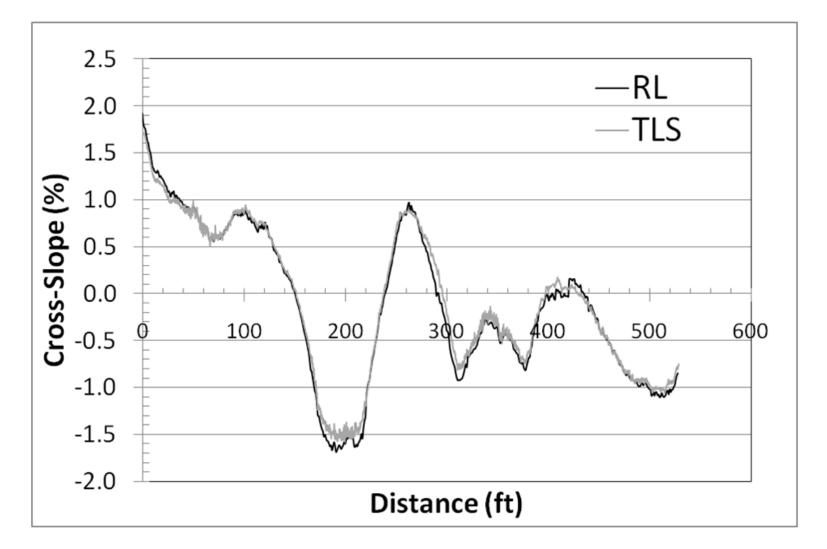
Left Wheel Path IRI Comparison



Right Wheel Path IRI Comparison

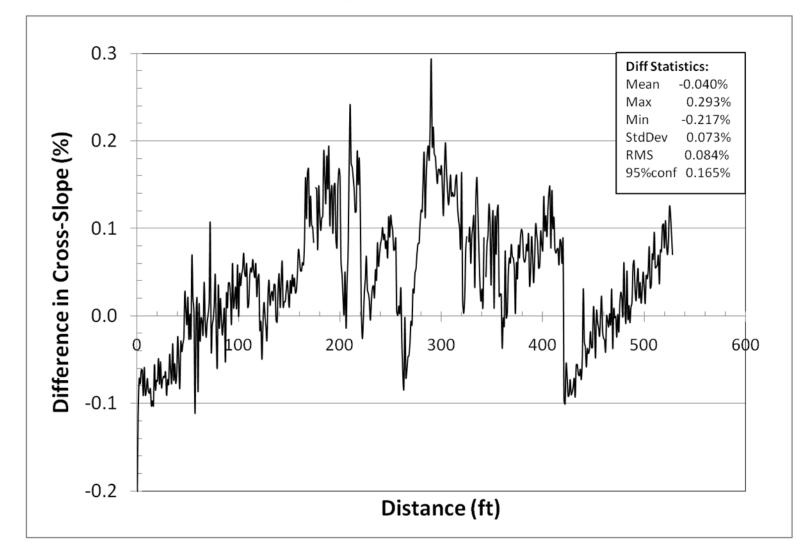
IRI Across the Roadway

IRI determined across the roadway for profiles spaced every 3" using a 3" point spacing

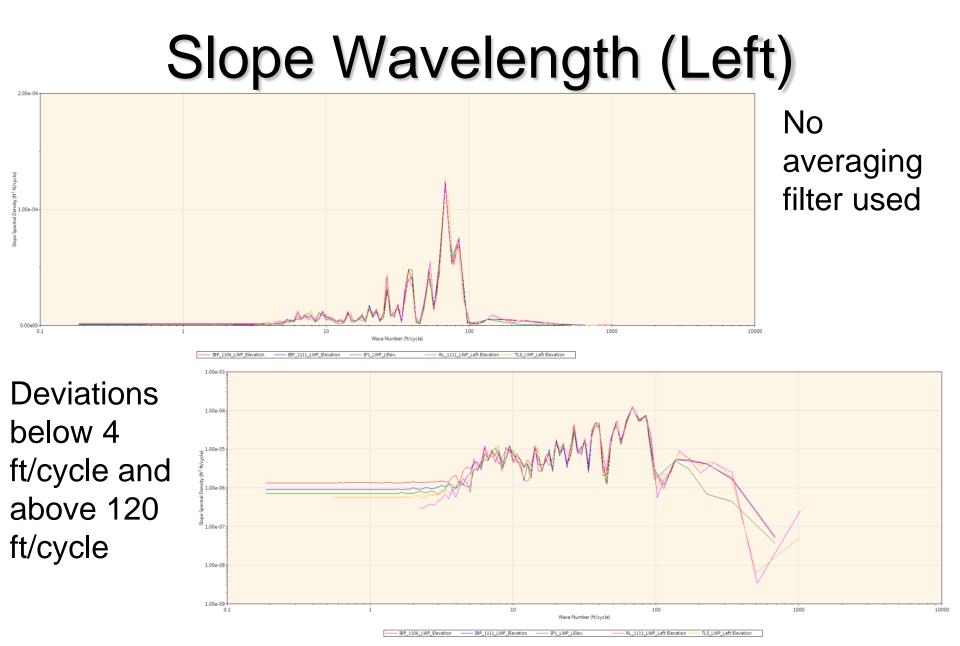


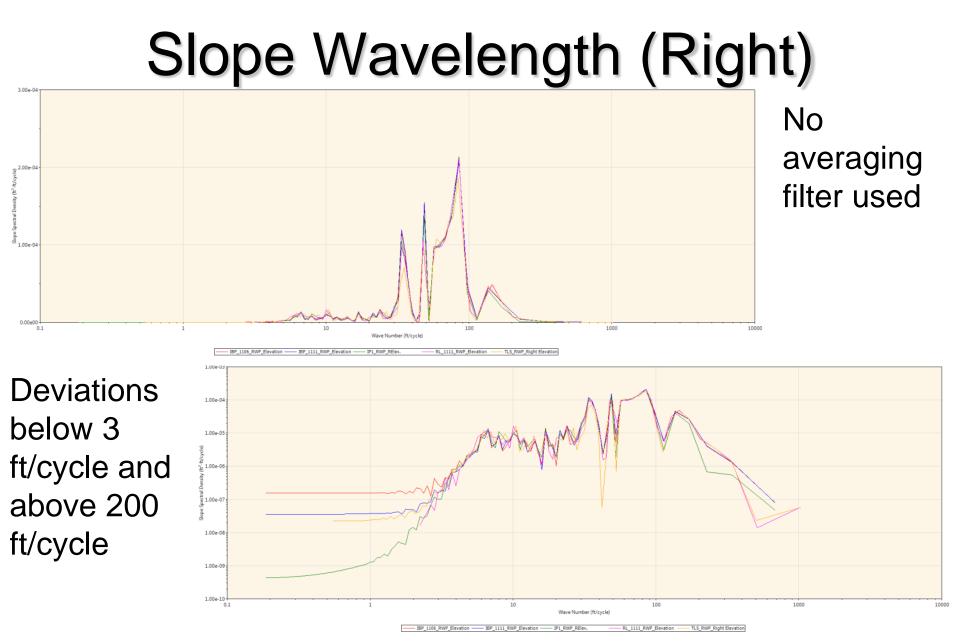
Cross Correlations

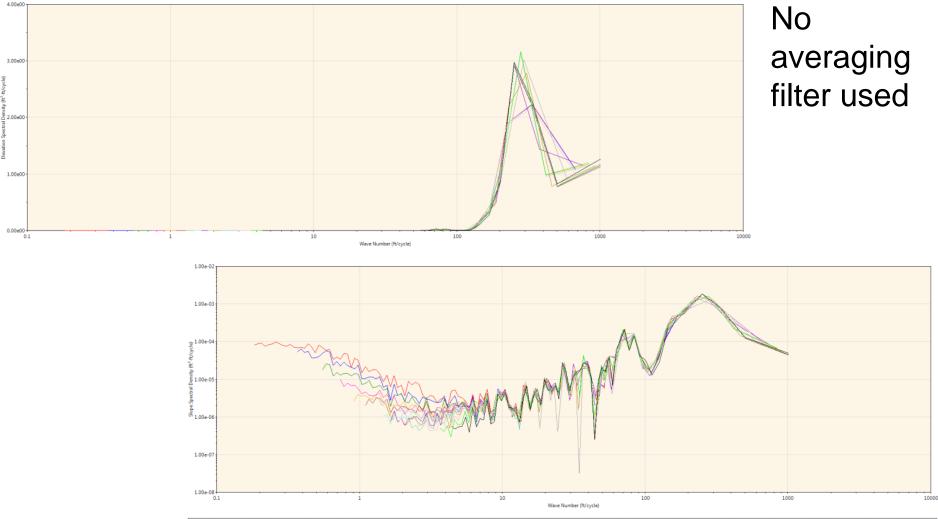
Left Wheel I	Path					REFER	ENCE	>												
Reference / Profile	IBP_	1106	IBP_	1111	IBP_	1206	RL_	1111	RL_	1204	TLS_	_1110	IP	'1	IF	2	IF	93	IF	24
IBP_1106	98.20	(0.32)	91.65	(0.76)	87.61	(1.19)	83.27	(1.30)	75.52	(0.54)	90.57	(0.60)	87.54	(0.69)	91.13	(0.74)	72.01	(0.65)	96.34	(0.79)
IBP_1111	92.19		99.00	(0.46)	73.55	(0.98)	74.35	(0.79)	65.38	(0.85)	80.51	(0.80)	77.03	(0.75)	79.05	(1.02)	62.44	(0.98)	89.23	(0.82)
IBP_1206	86.78	(3.19)	72.10	(3.22)	97.37	(1.49)	85.70	(2.71)	84.26	(1.18)	86.79	(2.54)	86.40	(2.38)	90.84	(2.16)	69.47	(1.82)	87.56	(2.74)
RL_1111	88.44	-	77.99	-	86.21	-	-	-	83.87	-	88.48	-	88.36	-	90.84	-	67.30	-	87.74	-
RL_1204	80.73	-	68.93		72.46	-	83.87	-	-	-	82.37		81.98	-	84.59	-	64.21	-	80.32	-
TLS_1110	90.32	•	80.52	(0.52)	87.33	(0.84)		(0.30)	77.40	(0.56)	97.63	(0.69)		(0.66)	93.54	(0.55)	74.85	(1.27)		(0.49)
IP1	88.50			(0.72)		(1.06)		(0.62)	77.23	(0.90)	94.56	(1.19)		(0.49)		(1.17)		(1.58)		(1.17)
IP2	90.84	(0.92)	78.49	(1.59)	90.48	(1.29)	84.12	(1.09)	77.70	(1.55)	93.79	(0.94)		(2.56)	95.14	(0.16)		(1.43)	92.49	(1.55)
IP3	71.66			(2.00)	70.46	(2.44)	63.78	(1.76)		(1.73)	74.11	(2.67)	71.18	(2.62)		(2.58)		(2.09)		(2.76)
IP4	93.88	(2.77)	86.19	(2.94)	87.08	(3.62)	74.06	(1.92)	82.46	(1.67)	90.75	(1.76)	88.80	(1.91)	91.29	(2.92)	74.19	(1.05)	94.40	(2.49)
		· /		/		. /						• •								1
		x /																		
Right Wheel				x - /		REFER		>												
Right Wheel Reference / Profile	Path IBP_	_ 1106	IBP_	1111	IBP_	REFER 1206	ENCE RL_	1111	RL_	1204	TLS_	_1110	IP		IF		IF	23	IP	24
Right Wheel Reference / Profile IBP_1106	Path IBP_ 99.02	_1106 (0.16)	IBP_ 92.38	<u>1111</u> (0.21)	IBP_ 92.23	REFER 1206 (0.17)	ENCE RL_ 93.37	1111 (0.36)	RL_ 83.93	1204 (0.66)	TLS_ 91.42	(0.14)	94.22	(0.17)	96.92	(0.29)	IF 69.39	23 (0.40)	IF 98.00	94 (0.40)
Right Wheel Reference / Profile IBP_1106 IBP_1111	Path IBP_ 99.02 92.42	_1106 (0.16) (0.72)	IBP_ 92.38 99.32	11111 (0.21) (0.19)	IBP_ 92.23 79.75	REFER 1206 (0.17) (0.85)	ENCE RL_ 93.37 84.90	1111 (0.36) (0.70)	RL_ 83.93 77.94	1204 (0.66) (0.64)	TLS_ 91.42 84.15	(0.14) (0.58)	94.22 83.40	(0.17) (0.71)	96.92 87.39	(0.29) (0.69)	IF 69.39 62.48	23 (0.40) (0.46)	IF 98.00 93.87	94 (0.40) (0.50)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206	Path IBP_ 99.02 92.42 92.39	1106 (0.16) (0.72) (1.06)	IBP_ 92.38 99.32 80.04	1111 (0.21) (0.19) (1.30)	IBP_ 92.23 79.75 99.24	REFER 1206 (0.17)	ENCE RL_ 93.37	1111 (0.36) (0.70)	RL	1204 (0.66)	TLS 91.42 84.15 86.61	(0.14)	94.22 83.40 91.90	(0.17)	96.92 87.39 95.37	(0.29)	IF 69.39 62.48 66.30	23 (0.40)	IF 98.00 93.87 90.33	94 (0.40)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111	Path IBP_ 99.02 92.42 92.39 95.82	1106 (0.16) (0.72) (1.06) -	IBP_ 92.38 99.32 80.04 87.81	1111 (0.21) (0.19) (1.30) -	IBP_ 92.23 79.75 99.24 91.18	REFER 1206 (0.17) (0.85)	ENCE RL_ 93.37 84.90 92.90	1111 (0.36) (0.70)	RL_ 83.93 77.94	1204 (0.66) (0.64)	TLS 91.42 84.15 86.61 89.89	(0.14) (0.58)	94.22 83.40 91.90 92.47	(0.17) (0.71)	96.92 87.39 95.37 94.73	(0.29) (0.69) (0.93) -	IF 69.39 62.48 66.30 67.29	23 (0.40) (0.46)	IF 98.00 93.87 90.33 93.90	94 (0.40) (0.50)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111 RL_1204	Path IBP_ 99.02 92.42 92.39 95.82 87.45	1106 (0.16) (0.72) (1.06) -	IBP_ 92.38 99.32 80.04 87.81 81.32	1111 (0.21) (0.19) (1.30) - -	IBP_ 92.23 79.75 99.24 91.18 89.48	REFER 1206 (0.17) (0.85) (0.28) - -	ENCE RL_ 93.37 84.90 92.90 - 83.17	1111 (0.36) (0.70) (0.75) - -	RL _ 83.93 77.94 86.58 83.17 -	1204 (0.66) (0.64) (0.33) - -	TLS 91.42 84.15 86.61 89.89 80.22	(0.14) (0.58) (0.99) - -	94.22 83.40 91.90 92.47 84.81	(0.17) (0.71) (0.93) - -	96.92 87.39 95.37 94.73 89.27	(0.29) (0.69) (0.93) - -	69.39 62.48 66.30 67.29 61.55	23 (0.40) (0.46) (0.63) - -	IF 98.00 93.87 90.33 93.90 86.57	24 (0.40) (0.50) (1.08) - -
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111 RL_1204 TLS_1110	Path IBP_ 99.02 92.42 92.39 95.82 87.45 92.07	1106 (0.16) (0.72) (1.06) - (0.88)	IBP 92.38 99.32 80.04 87.81 81.32 84.67	1111 (0.21) (0.19) (1.30) - - (0.96)	IBP_ 92.23 79.75 99.24 91.18 89.48 86.37	REFER 1206 (0.17) (0.85) (0.28) - - (0.88)	ENCE RL_ 93.37 84.90 92.90 - 83.17 87.21	1111 (0.36) (0.70) (0.75) - - (1.46)	RL _ 83.93 77.94 86.58 83.17 - 78.34	1204 (0.66) (0.64) (0.33) - - (1.47)	TLS 91.42 84.15 86.61 89.89 80.22 98.56	(0.14) (0.58) (0.99) - - (0.10)	94.22 83.40 91.90 92.47 84.81 94.02	(0.17) (0.71) (0.93) - - (0.50)	96.92 87.39 95.37 94.73 89.27 90.85	(0.29) (0.69) (0.93) - - (0.80)	IF 69.39 62.48 66.30 67.29 61.55 72.12	23 (0.40) (0.46) (0.63) - - (0.84)	IF 98.00 93.87 90.33 93.90 86.57 89.39	24 (0.40) (0.50) (1.08) - - (0.72)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111 RL_1204 TLS_1110 IP1	Path IBP_ 99.02 92.42 92.39 95.82 87.45 92.07 92.80	1106 (0.16) (0.72) (1.06) - - (0.88) (2.29)	IBP _ 92.38 99.32 80.04 87.81 81.32 84.67 81.86	11111 (0.21) (0.19) (1.30) - - (0.96) (2.26)	IBP_ 92.23 79.75 99.24 91.18 89.48 86.37 91.99	REFER 1206 (0.17) (0.85) (0.28) - (0.88) (1.22)	ENCE RL 93.37 84.90 92.90 - 83.17 87.21 91.27	1111 (0.36) (0.70) (0.75) - - (1.46) (0.94)	RL 83.93 77.94 86.58 83.17 - 78.34 81.69	1204 (0.66) (0.64) (0.33) - - (1.47) (1.00)	TLS_ 91.42 84.15 86.61 89.89 80.22 98.56 92.91	(0.14) (0.58) (0.99) - - (0.10) (0.84)	94.22 83.40 91.90 92.47 84.81 94.02 97.51	(0.17) (0.71) (0.93) - - (0.50) (1.46)	96.92 87.39 95.37 94.73 89.27 90.85 92.76	(0.29) (0.69) (0.93) - (0.80) (1.67)	IF 69.39 62.48 66.30 67.29 61.55 72.12 72.26	23 (0.40) (0.46) (0.63) - - (0.84) (0.82)	IF 98.00 93.87 90.33 93.90 86.57 89.39 90.63	24 (0.40) (0.50) (1.08) - (0.72) (1.53)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111 RL_1204 TLS_1110 IP1 IP2	Path IBP_ 99.02 92.42 92.39 95.82 87.45 92.07 92.80 94.22	1106 (0.16) (0.72) (1.06) - (0.88) (2.29) (2.99)	IBP_ 92.38 99.32 80.04 87.81 81.32 84.67 81.86 84.91	1111 (0.21) (0.19) (1.30) - - (0.96) (2.26) (3.14)	IBP_ 92.23 79.75 99.24 91.18 89.48 86.37 91.99 93.80	REFER 1206 (0.17) (0.85) (0.28) - (0.88) (1.22) (1.24)	ENCE RL_ 93.37 84.90 92.90 - 83.17 87.21 91.27 92.15	1111 (0.36) (0.70) (0.75) - - (1.46) (0.94) (2.28)	RL 83.93 77.94 86.58 83.17 - 78.34 81.69 84.76	1204 (0.66) (0.64) (0.33) - - (1.47) (1.00) (0.85)	TLS_ 91.42 84.15 86.61 89.89 80.22 98.56 92.91 90.14	(0.14) (0.58) (0.99) - - (0.10) (0.84) (1.70)	94.22 83.40 91.90 92.47 84.81 94.02 97.51 94.98	(0.17) (0.71) (0.93) - - (0.50) (1.46) (1.65)	96.92 87.39 95.37 94.73 89.27 90.85 92.76 95.66	(0.29) (0.69) (0.93) - - (0.80) (1.67) (3.40)	IF 69.39 62.48 66.30 67.29 61.55 72.12 72.26 70.41	23 (0.40) (0.46) (0.63) - (0.84) (0.82) (2.29)	IF 98.00 93.87 90.33 93.90 86.57 89.39 90.63 93.26	24 (0.40) (0.50) (1.08) - (0.72) (1.53) (2.64)
Right Wheel Reference / Profile IBP_1106 IBP_1111 IBP_1206 RL_1111 RL_1204 TLS_1110 IP1	Path IBP_ 99.02 92.42 92.39 95.82 87.45 92.07 92.80 94.22 69.64	1106 (0.16) (0.72) (1.06) - - (0.88) (2.29)	IBP_ 92.38 99.32 80.04 87.81 81.32 84.67 81.86 84.91 62.33	11111 (0.21) (0.19) (1.30) - - (0.96) (2.26)	IBP_ 92.23 79.75 99.24 91.18 89.48 86.37 91.99 93.80 65.92	REFER 1206 (0.17) (0.85) (0.28) - (0.88) (1.22)	ENCE RL_ 93.37 84.90 92.90 - 83.17 87.21 91.27 92.15 64.36	1111 (0.36) (0.70) (0.75) - - (1.46) (0.94)	RL_ 83.93 77.94 86.58 83.17 - 78.34 81.69 84.76 58.19	1204 (0.66) (0.64) (0.33) - - (1.47) (1.00) (0.85)	TLS_ 91.42 84.15 86.61 89.89 80.22 98.56 92.91 90.14 70.48	(0.14) (0.58) (0.99) - - (0.10) (0.84) (1.70) (2.43)	94.22 83.40 91.90 92.47 84.81 94.02 97.51 94.98 71.98	(0.17) (0.71) (0.93) - - (0.50) (1.46)	96.92 87.39 95.37 94.73 89.27 90.85 92.76 95.66 76.81	(0.29) (0.69) (0.93) - (0.80) (1.67) (3.40) (1.14)	IF 69.39 62.48 66.30 67.29 61.55 72.12 72.26 70.41	23 (0.40) (0.46) (0.63) - (0.84) (0.82) (0.82) (2.29) (1.41)	IF 98.00 93.87 90.33 93.90 86.57 89.39 90.63	24 (0.40) (0.50) (1.08) - (0.72) (1.53)

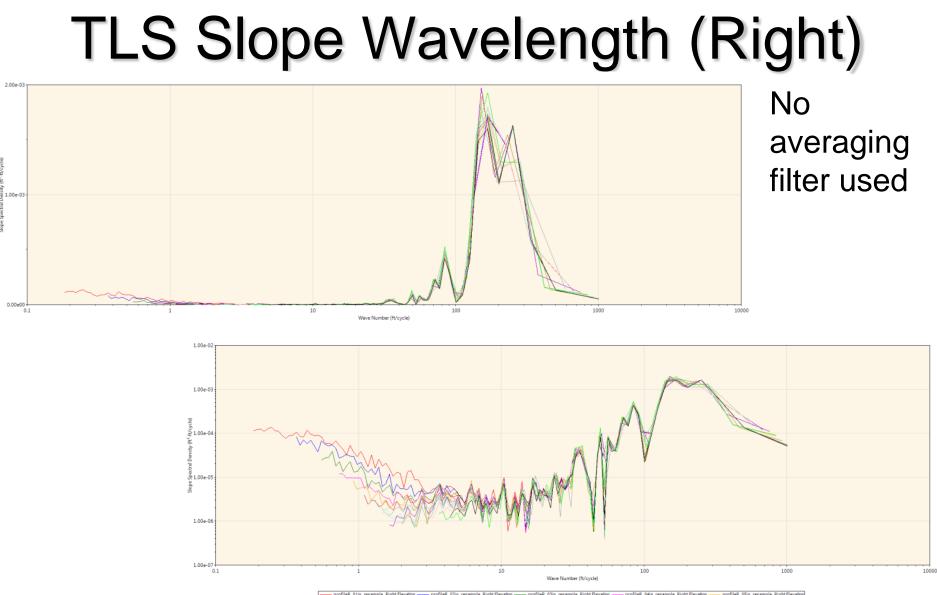


Cross Slope Comparison




Cross Slope Comparison





TLS Slope Wavelength (Left)

profileR_05in_resample_Right Elevation profileR_02in_resample_Right Elevation profileR_03in_resample_Right Elevation profileR_04in_resample_Right Elevation profileR_05in_resample_Right Elevation profileR_05in_resa

Conclusions

- TLS is able to measure cross slopes and multiple profiles across the roadway
- Methods measure same wavelengths
- Optimal spacing interval for TLS: 2-5 in
 - More scans allow closer spacing, but increase time
 - Profiler and Inclinometer read at 1 in
 - Requires additional time and software

Conclusions (cont.)

- Repeatability is met (AASHTO 92%, ODOT 90%)
- Accuracy is difficult to meet but achievable (AASHTO, 90%ODOT 88%)

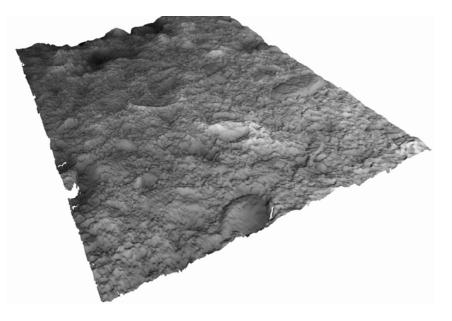
- More difficult for left wheel path

Scanning Considerations Learned

- Data Processing:
 - Data should be checked to avoid truncation
 - Relative and vertical accuracy are more important than network and horizontal accuracy
- Profile Extraction:
 - Intensity values should be used not RGB color values
 - Extraction is easiest if painted wheel paths are straight

Future Work

- Effects of time and weathering
- Road wear from studded tires
- Use of mobile laser scanning
- Use of one high resolution scan instead of multiple scans



Additional Work Done

- Micro Texture Analysis
 - Fine scale 3D laser scanning
 - Evaluated texture of asphalt pavements with varying predominant aggregate sizes
 - $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ inch aggregates
 - Measured the texture using three different methods
 - Tested various scanner settings

Micro Texture Analysis

Acknowledgments

- Funding Organization: Oregon Department of Transportation FHWA
- Oregon State Geomatics Lab
- George Chang
- Equipment, training and software:

Questions

