Texture and Tire/Pavement Friction

by Brian L. Schleppi

OH DOT Office of Technical Services

RPUG 2012
Annual Meeting

Minneapolis, MN September 25, 2012

Outcomes

- Understand vehicle, tire, geometric, and environmental factors in braking and control
- Learn what pavement surface properties control "available friction"
- Greater understanding of tire/pavement interface
- Understand how we measure "available friction" and use the data
- Questions/comments

Does This Make Sense When Measuring Friction?

- Using locked wheel testers
- Using bias ply tires
- Using smooth or ribbed tires
- Using continuous friction measurement equipment (CFMEs)
- Testing a wet surface

Wet Friction Demand Factors

Environmental

- Wet versus dry
- Temperature variations
- Seasonal variations

Wet Friction Demand Factors

Highway Design/Geometric and Facility Considerations

- Design/Posted Speed
- Straight/Flat versus
 Curves/Super's/Hills and Grades
- Traffic Makeup Volumes Congestion
- Intersections/Interchanges
- Water Run-off/Drainage

Wet Friction Influence Factors

Pavement Distresses

- Rutting Ponding
- Raveling
- Bleeding/Flushing
- Cracking
- Corrugations
- Roughness
- Etc.

Wet Friction Demand Factors

Vehicle/Operator

- Speed
- Weight
- Design/Condition of Braking System
- Alertness/Reaction Time
- Tires

Wet Friction Demand Factors

Tires

- Age and Tread Depth
- Tread Pattern
- Hardness/Softness of Rubber
- Inflation Pressure
- Type and Design

Wet Pavement Surface Friction

- Strive for Sufficient Available
 Friction everywhere
- Sufficient Level Varies by Location (demand level)
- Available Friction is exclusively dependent on both the microtexture and macrotexture of the surface

Wet Pavement Surface Friction

Macrotexture - the texture you can see with the naked eye

- Openness of an AC surface
- Jaggedness of a chip seal
- Tining, grooving, or drag finish one sees on a PCC surface
- Controlled largely be the largest aggregate size in the mix

Wet Pavement Surface Friction

Microtexture - the finer texture more easily felt than seen

- Fine surface texture of sand and aggregate particles and degree of polish on exposed surfaces
- Bituminous coating until worn off
- Fine surface texture of sand/cement paste on a PCC surface

Wet Pavement Surface Friction

Microtexture

- Fine texture that interacts with tire rubber for friction (adhesion)
- Important at all speeds, more dominant at lower speeds

Wet Pavement Surface Friction

Macrotexture

- Allows space for water to evacuate
- Decreases hydroplaning potential
- Allows tire to contact the surface when wet (lets microtexture work)
- Increasingly important at higher speeds
- Deforms tire tread hysteresis friction

Tire in Contact with Pavement

Longitudinal Slip, Traction

Slip =
$$\frac{V_x - R \cdot \omega}{R \cdot \omega} \cdot 100$$

Braking Tire

Longitudinal Slip, Braking

$$Slip = \frac{V_x - R \cdot \omega}{V_x} \cdot 100$$

Tire/Pavement Friction

Braking Tire

ASTM E 274 in action

DriveAlong.mpeg

ASTM E 274 in action

DriveBy.mpeg

ASTM E 501 **ASTM E 524**

$$SN = (Fh/Fv)*100$$

- **SN** skid number or friction number
- Fh horizontal force to drag locked wheel
- Fv vertical or load force on locked wheel
 - r subscript for ribbed test tire
 - s subscript for smooth test tire

standard test speed = 40 mph

Not a direct measure of either microtexture or macrotexture but a response to both.

- 40-50 year history
- Lane closures/traffic control not req'd
- Other friction testing devices don't measure/respond to surface texture the same

Ribbed tire – sensitive to microtexture and insensitive to macrotexture

(ribs give place to evacuate water film)

Smooth tire – sensitive to both micro and macrotexture

(relies solely on pavement to evacuate water)

A measure of the pavement's contribution of your ability to stop when the road is wet!

Ribbed vs. Smooth test tire

- Using only one gives little insight into how much micro vs. macro
- Threshold levels different for both
- Use one, the other, or both?
 - Safety
 - Research
 - Curiosity

Available Friction

Need sufficient level of both microtexture and macrotexture

- Insufficient macro means increased hydroplaning potential, regardless of microtexture
- Pavement and tire both have to evacuate water
- Insufficient micro means increased stopping distance regardless of macrotexture
- To a point, a high level of one can make up for a marginal level of the other

Available Friction

Need sufficient level of both microtexture and macrotexture

- Can be engineered/designed
- Must consider life of the surface
- Carefully consider level of available friction required for given location

Available Friction

Can we have too much friction?

Skidding versus Rolling over?

High levels of Macrotexture may:

- Increase tire/pavement noise
- splash/spray?
- Require more snow/ice removal chemicals
- Decrease tire life

Optimize texture for all surface properties!

Influence of surface characteristics on vehicle performance. (Ayton, 1991)

Other Devices that measure friction/respond to texture

- Mu meter
- Dynamic Friction Tester (DFT)
- Continuous Friction Measurement Equipment (CFMEs)
 - Scrim
 - HFT
- British Pendulum
- Etc.

All respond to given micro and macrotexture in different ways => hard to compare different friction testing devices

Direct Measures of Macrotexture

- Sandpatch test (traffic control)
- 2-D point laser => at speed
- 3-D lines scan laser of photographic = at speed

As a community, we're improving our ability to directly measure and quantify macrotexture while microtexture can only be directly measured in laboratory environments

Acknowledgements

- Steve Karamihas UMTRI
- Dr. Jim Wambold retired Penn State
- Dr. Edgar David de León Izeppi Virginia
 Tech Transportation Institute
- ODOT Staff Dan Radanovich, Thad Tibbles, Mike Lynch, Dan McNeil, Andrew Williams, Dave Powers, Lloyd Welker

Questions ??????

Brian L. Schleppi (614) 752-5745 brian.schleppi@dot.state.oh.us

THANK YOU