

AN APPROACH TO DEVELOPING A REFERENCE PROFILER

TREY SMITH

Graduate Research Assistant Virginia Tech

RPUG Meeting October 28, 2008

Overview

Vehicle Terrain Performance Lab Research Mission Improve vehicle performance by studying interactions between

vehicles and terrain

Supported by: FHWA Project "Improving the Quality of Pavement Profiler Measurement"

Overview

Vehicles

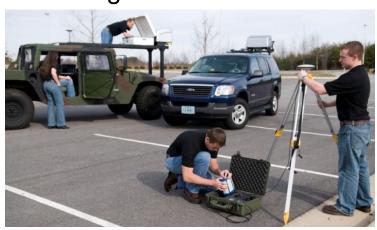
- Passenger cars, commercial off-road, military vehicles, motorcycles
- Chassis components (e.g., tires, suspension)

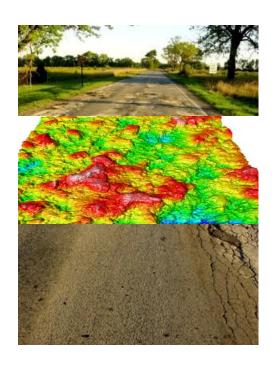
Terrain

- Pavement Health Monitoring (Today)
- Vehicular Simulation- racetracks, proving grounds

Performance

- Ride
- Handling
- Mobility
- Durability

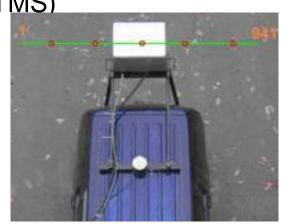

Project Motivation



Establish uniform method for profiler certification

Objectives

- Resolution (record wavebands of interest)
- Repeatability
- Accuracy
 - □ Profile
 - □ Longitudinal Distance


Reference Profiler Status

Developed and Verified

Vehicle Terrain Measurement System (VTMS)

- Capabilities
 - ☐ 1 mm precision for short (sub km) distances
 - ☐ 10 mm precision for longer (km +) distances

Currently Developing Two System Improvements

- Tire Bridging/Envelopment Algorithms
 - ☐ To be submitted to the *International Journal of Vehicle Modeling and Testing*
- Absolute System Calibration Techniques (Today's Focus)
 - □ To be submitted to the *Journal of Testing and Evaluation*

Trey Smith

Developed and Verified

Vehicle Terrain Measurement System

- Scanning Laser
 - Provides relative height measurement
- Inertial Navigation System
 - Establishes global coordinate system
 - □ Attenuates low frequency body motion (<10 Hz)
- Accelerometers
 - □ Attenuate high frequency body motion (>10 Hz)



Developed and Verified

All Data Combined in Post-Processing

So now that we have a high-fidelity 3D terrain profiler, how can it be effectively used for Pavement Health Monitoring?

3D Terrain Profiles

Problems

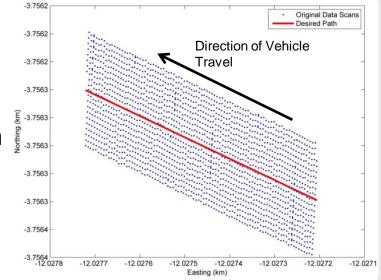
- Produces copious amounts of data
- Undefined performance metrics for 3D

Benefits

- Knowledge of entire contact patch
- Localized disturbance recognition
- High Fidelity

Collapsing 3D Terrain Data

Problem: How to generate 2D profiles using benefits of 3D Data?


Solution: Intelligently collapse 3D data to 2D profiles

- User defines path of travel
- Consult elevation information from neighboring points

Trey Smith

Graduate Research Assistant

Choose statistical reduction method

What issues affect Overall System Performance?

- Relative reference-ground distance measurement
 - □ Evaluate laser measurement system
- Body motion mitigation procedure
 - □ Sprung-mass motion and laser motion convoluted
 - □ Common Mode Rejection

Laser measurement system

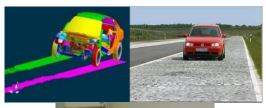
Inertial Navigation System

Trey Smith

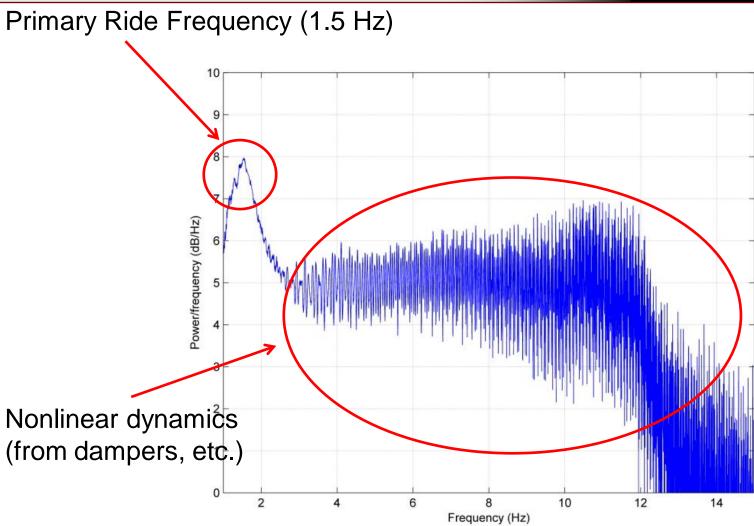
What can be done to evaluate how these issues are addressed?

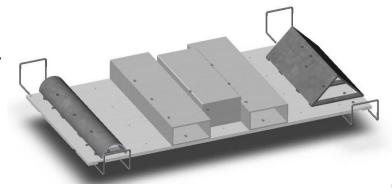
- □ Evaluate laser measurement system
 - Sharp edged (high bandwidth) event
 - Changing reflectivity
- □ Sprung-mass motion and laser motion convoluted
 - Accuracy of inertial navigation system
 - Accuracy of accelerometers

Solution: Excitation Event and Calibration Surface


- Excite vehicle to primary-ride and wheel-hop frequencies
- Evaluate performance on machined surface

Excitation to Resonant Frequencies


- Excite vehicle at resonant frequencies with shaker rig (8 post for the NASCAR fans out there)
- Plot PSD of velocity
- Use PSD to find primary ride and wheel-hop frequencies


Excitation Event Design

- Geometry driven by resonant frequencies
- Inexpensive and light

Calibration Surface

- Machined for High Accuracy
- Sharp Edged transitions for laser verification
- Easily Transported
- Interchangeable Cleats

Trey Smith

Conclusions

Vehicle Terrain Measurement System

- Produces high-fidelity 3D Terrain Measurements
 - □ Knowledge of entire contact patch
 - ☐ Mitigate the effects of localized disturbances

Absolute Calibration

- Excitation Event
 - □ Excite vehicle to resonant frequencies
- Calibration Surface
 - Machined for high accuracy
 - □ Absolute Reference

