Pavement Surface Properties Consortium

Speed Adjustment Factors for the Locked-wheel Skid Trailer

Center for Sustainable Transportation Infrastructure

Wirginia Tech

Invent the Future

Outline

- Introduction
- Objective
- Data collection
- Analysis
- Results
- Example
- Conclusion

Consortium Objectives

To establish a research program focused on enhancing the level of service provided by the roadway transportation system through optimized pavement surface texture characteristics.

Virginia Smart Road

Sections

E-F-G-H-I-J-K-L

CRCP, JRCP, and bridges

Sections Loop-A-B-C-D

Virginia Smart Road

CRCP section

VTTI labs

RR Bridge

JRCP section

Smart Road Bridge

Available Pavement Surfaces

SM 9.5 D SUPERPAVE

OGFC

SMA 12.5

Cargill SafeLane™

Tined CRCP

JRCP

Ground JRCP

VDOT EP5LV

UvirginiaTech TRANSPORTATION INSTITUTE *Center for Sustainable Transportation Infrastructure*

Current Projects

- 1. Annual Equipment Rodeo
- 2. Development of speed adjustment factors for locked-wheel skid trailer measurements
- 3. Evaluation of new "High-Friction Surface" pavement technologies
- 4. GripTester Loan Program
- 5. Stereo Vision Texture Measuring System

TRANSPORTATION Center for Sustainable Transportation Infrastructure **INSTITUTE**

VirginiaTech

Annual Equipment Rodeo

Organize and provide the facilities and needed support for a pavement surface measurement device comparison and verification roundup at the Virginia Smart Road:

Smoothness (high speed, lightweight, etc)
 Friction (LWS, CFME (Griptester), DFT, etc)
 Texture (CTMeter, SVS, DSRM, Hydro, etc)

Objectives

- Road and traffic conditions create problems for operators for skid tests in urban and interstate highways
- One solution is to use adjustment factors to convert measurements obtained at different speeds to a standard speed (40 mph according to ASTM E 274)

Data Collection

- Smooth Tires: 5 runs for each device at 20, 40 and 50 mph (2007 and 2008)
- Ribbed Tires: 5 runs for each device at 40, 50 and 60 mph (2009)
- Macrotexture (MPD) with CTMeter

2008 Annual Equipment Comparison Roundup at the Smart Road

PAVEMENT SURFACE PROPERTIES CONSORTIUM

RANSPORTATION Center for Sustainable Transportation Infrastructure **INSTITUTE**

VirginiaTech

Data Analysis

Skid Unit Comparison

Sample skid testing results for two sections of the Smart Road

Principal Component Analysis

- Principal Component Analysis (PCA) was used to identify multivariable homogeneity (SN, texture, and speed)
- To simplify adjustment factors, grouping was done for similar types of pavements with similar behavior
- Results were divided into 3 groups: SM 9.5D, OGFC and CRCP

Principal Component Analysis (cont.)

Results by Surface Mix

SUPERPAVE and SMA mixes

UvirginiaTech Transportation Center for Sustainable Transportation Infrastructure **INSTITUTE**

Results by Surface Mix

Open Graded Friction Course (OGFC)

Results by Surface Mix

Continuously Reinforced Concrete Pavement

Results

ADJUSTMENT FACTORS: change of skid number for one mph change in speed

Surface	SM and SMA			OGFC			CRCP		
Smooth tire	LWS-1	LWS-2	LWS-3	LWS-1	LWS-2	LWS-3	LWS-1	LWS-2	LWS-3
	-0.96	-0.94	-1.19	-0.62	-0.60	-0.61	-1.17	-1.16	-1.29
Ribbed tire	LWR-1	LWR-2	LWR-3	LWR-1	LWR-2	LWR-3	LWR-1	LWR-2	LWR-3
	-0.66	-0.50	-0.34	-0.63	-0.40	-0.33	-0.65	-0.50	-0.47

Confidence Intervals

- Confidence intervals were determined for the mean and predicted observations for both tires
- For smooth tire tester around SN ± 12 and for ribbed tire testers were SN ± 8
- Range of the adjustment factors can be used for each group of mixes from confidence intervals
- Confidence intervals for the smooth tire appear wider (more sensitive to road and testing conditions)

Confidence Intervals (cont.)

Alternative Method

- Adjustment Factors are a function of macrotexture (For Smooth Tire only)
 - Based on correlation between adjustment factors and texture
 - > Allows using adjustment factors on other sites

Revised Adjustment Factors

$$F_{V2} = F_{V1} + \Delta F$$

$$\Delta F = (0.85 * TX - 1.64) * \Delta V$$

 F_{V2} = skid number at desired speed (V₂) F_{V1} = skid number at measured speed (V₁)

$$\Delta \mathbf{V} = \mathbf{V}_2 - \mathbf{V}_1$$

$$C = 0.85TX - 1.64$$

Example

Section L (SMA) LWS-2 (Adj. Fact.) → -0.94 TX (MPD) → 1.08

$$ightarrow V_{20}
ightarrow 19.4$$
 $V_{40}
ightarrow 41.7$ $V_{50}
ightarrow 47.5$

$$\succ F_{20} \rightarrow 67 \qquad \qquad F_{40} \rightarrow 47.5 \qquad \qquad F_{50} \rightarrow 44.7$$

Example (cont.)

Using proposed factors

 $SN_{40} \rightarrow 47.5 @ 41.7 \ mph$

Example (cont.)

Alternative Method (using texture)

- From 20 to 40
 SN₄₀ = 67 + (0.85*1.08 1.64)*(41.7 19.4) = 50.9
- From 50 to 40
 SN₄₀ = 44.7 + (0.85*1.08 1.64)*(41.7 47.5) = 48.8

 $SN_{40} \rightarrow 47.5 @ 41.7 mph$

UvirginiaTech Transportation Center for Sustainable Transportation Infrastructure **INSTITUTE**

Summary & Conclusions

- Linear relationships between skid and speed work well in 30-65 mph range
- Skid-speed Adjustment Factors were computed for both tire skid-testers
- Two methods developed for smoothtires (simple and with texture correction)

Acknowledgements

- Co-authors: Kevin McGhee, Edgar de León, Gerardo Flintsch
- Pavement Surface Properties Consortium members: FHWA, CT, GA, SC, MS, PA, VA
- VA-SPRC team

TRANSPORTATION Center for Sustainable Transportation Infrastructure

