






Robert Binns
Mechanical Engineering
Vehicle Terrain Performance Laboratory

Research Mission
Improve vehicle performance
by studying interactions between vehicles and terrain

# Vehicle Terrain Measurement System



- Operating Principle
  - System Hardware
  - Signal Processing
- Data acquisition procedure
- System Improvements
- System Cost
- FHWA Reference Profiler Round-up Discussion
- Conclusions



# System Overview

#### WirginiaTech

#### Hardware

- Three laser measurement subsystems (relative height measurement)
- Inertial Navigation System (INS) (global positioning, motion cancellation)
- Accelerometers (high-frequency motion cancellation)

## Digital Signal Processing

- Synchronization of equipment
- Conversion to global coordinates
- Cancellation of body motion



Dr. John B. Ferris, Director

#### Hardware

#### WirginiaTech



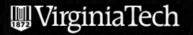
#### SICK LIDAR

- Resolution: 360 pts over 180° scan
- Accuracy: 10 mm
- Sample rate: 75 Hz



#### Phoenix Scientific

- Resolution: 941 pts over 4m scan
- Accuracy: 0.1 mm
- Sample rate: 1 kHz




#### RoLine Laser

- Resolution: 160 pts over 100mm scan
- Accuracy: 0.01 mm
- Sample rate: 3 kHz

Dr. John B. Ferris, Director

#### Hardware



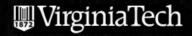






# Inertial Navigation System (DGPS + IMU)

- Resolution: 0.75 mm
- Horizontal Accuracy: +/- 0.01 m
- Sample rate: 100 Hz


#### Accelerometers

- Resolution: 0.0025 g
- Accuracy: +/- 0.2% FSO
- Sample rate: 4 kHz

Dr. John B. Ferris, Director



# Digital Signal Processing



All Data Combined in Post-Processing

Equipment

**Post Processing** 

Base Station



Error Correction

Kalman Filter

INS Solution: Vehicle Position & Orientation

In-Vehicle



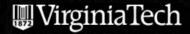
Filter

Integrate twice

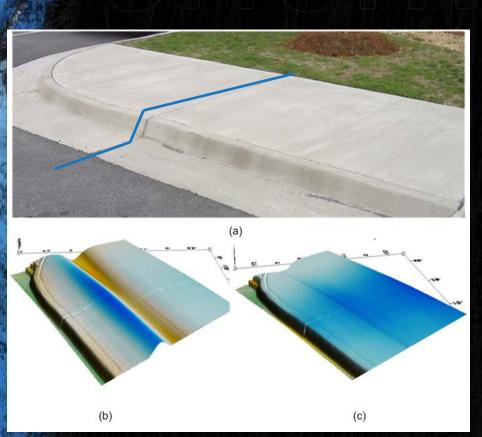
Laser Roll, Pitch & Height

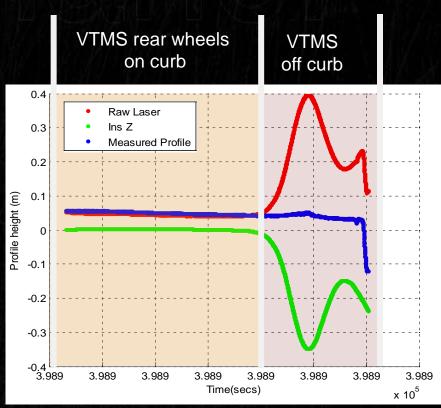
and the same of th






3


Lasers / Terrain Vector


Dr. John B. Ferris, Director

# Digital Signal Processing



#### **Body Motion Cancellation**

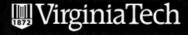




# Data Acquisition Procedure

WirginiaTech

- Initial Setup
  - Inertial Navigation System
  - Accelerometers
  - Log File
  - Scanning Laser
- Data Collection
  - Reference markers
  - Recommended practice




## **Initial Setup**

- Inertial Navigation System
  - IMU Alignment
  - Static GPS/IMU Alignment Time
- Accelerometers
  - Sampling rate
  - Low-pass filter
- Log File
  - Track file naming convention
  - Describe measured terrain
- Scanning Laser
  - Spinning polygon mirror

Dr. John B. Ferris, Director

www.me.vt.edu/VTPL



Automated with GPS/INS Completion Tool



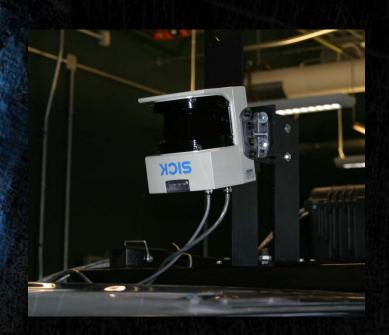
#### **Data Collection**

WirginiaTech

- Reference Markers
  - Aluminum plates: 10mm height
  - Corners of plates correspond to start/end of test section






- Test
  - Position host vehicle aligned with test section
  - Desired longitudinal spacing 10mm (downsample to 25mm)
  - Toggle run marker switch corresponding to start and end of run

Dr. John B. Ferris, Director

## System Enhancements

WirginiaTech

- Multi-Scale Terrain Measurement System
  - SICK Lidar
  - LMI Selcom Roline (2x)





Dr. John B. Ferris, Director

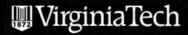


# System Cost



| Item                             | Cost      |
|----------------------------------|-----------|
| Host Vehicle                     | \$25,000  |
| PSI PPS Scanning Laser           | \$150,000 |
| NovAtel OEM4 INS System          | \$80,000  |
| Accelerometer System             | \$10,000  |
| Power Systems and Infrastructure | \$10,000  |
| Total System Cost                | \$275,000 |




# FHWA Reference Profiler Round-up WirginiaTech

- Data collected over 6 test sections
- Data acquisition time after setup: ~15-20 mins/section
- Processing time: ~4 hours/section
  - Process DGPS + IMU
  - Cancellation of body motion
  - Map point-cloud data to equally spaced grid
  - Removal of INS system drift
  - Creation of ERD





### Conclusion



- The VTMS is the result of years of university research and the VTPL continues to develop and improve the system.
- The VTMS captures high-fidelity 3D terrain data that can be reduced to 2D profile for the area of interest.
- The VTPL can produce multiple single longitudinal profiles of the same surface.
- Minimal site closure requirements due to short data collection time.
- Measurement offered as a service