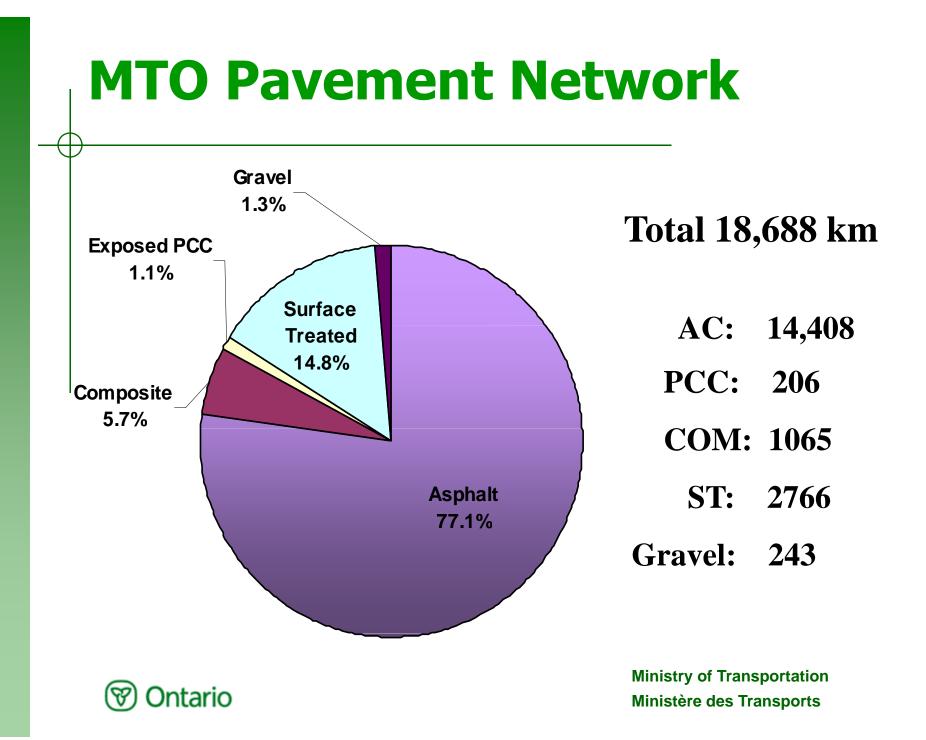
Rationalize Ontario Pavement Condition Evaluation and Data Collection Procedures towards Automation

Li Ningyuan, Ph.D., P.Eng. Ontario Ministry of Transportation

2008 RPUG Meeting Austin, Texas October 29, 2008

Presentation Outline

- **Pavement Condition Survey**
 - MTO Pavement Network
 - Acquisition of Pavement Condition Data
 - -Pavement Distress
 - Pavement Roughness
- Evaluation of Pavement Distresses
 - Distress Manifestation Index (DMI)
 - DMI Definition
 - Rationalize DMI



Pavement Condition Survey

• MTO Pavement Network consists of five pavement types:

- Hot mix asphalt, AC
- Concrete, PCC
- Composite, COM
- Surface treated, ST
- And gravel roads
- Currently, there are 1706 pavement mgmt sections in the provincial network, the average length of each section is 10km
- Each pavement section is uniform in terms of performance and pavement structure

🕅 Ontario

Pavement Condition Survey

Acquisition of Pavement Condition Data:

• Pavement Distress (DMI)

Pavement Ride Quality (IRI)

Pavement Distress

- Pavement Distress is subjectively evaluated by MTO regional pavement evaluators in the field using reference Manuals for Pavement Condition Rating
- Depending pavement type, there are 13 to 16 individual distresses to be evaluated in the field for each pavement section
- Pavement distresses are summarized using a Distress Manifestation Index (DMI) for each section

🕅 Ontario

Sample Individual Distresses

Ministère des Transports

Sample Individual Distresses

List of Distress Components

Asphalt Concrete Pavement (AC)

Ravelling and Coarse Aggregate Loss

Flushing

Rippling and Shoving

Wheel Track Rutting

Distortion

Longitudinal Wheel Track: Sing. / Multi.

Longitudinal Wheel Track: Alligator

Longitudinal Meandering and Midlane

Transverse: Half, Full and Multiple

Transverse: Alligator

Centreline: Single and Multiple

Centreline: Alligator

Pavement Edge: Single and Multiple

Pavement Edge: Alligator

Random/Map

Dertland Compart Congrets (DCC)
Portland Cement Concrete (PCC)
Ravelling and Coarse Aggregate Loss
Polishing
Scaling
Potholing
Joint and Crack Spalling
Faulting
Distortion
Joint Failure
Longitudinal Joint Separation
Longitudinal and Meandering Cracking
Transverse Joint Creep
Transverse Cracking
Joint Sealant Loss
Diagonal Corner and Edge Crescent
"D" Cracking
Ministry of Transportation

Ministère des Transports

E PDDC V.2./.1.0

File Edit Subject Record Reports Tools Help

Survey Month/Year: 6 2006 Evaluator: Todd Filson	tes		E PAVEMENT CONDITION	
Under Construction 677			EVALUATION	SEVERITY OF SEVERITY OF
HWY : 41		AC-P/	VEMENT DISTRESS TYPES	DISTRESS DISTRESS 1 2 3 4 5 1 2 3 4 5
LHRS : 29610		SURFACE	Ravelling and Course Aggregate Loss	
Offset: 4		DEFECTS	Flushing	0
Direction : B BOTH			Rippling and Shoving	
Facility: A ALL LANES Class: A ARTERIAL		SURFACE DEFORMATIONS	Wheel Track Rutting	
			Distortion	3
Distance From : 108.63 To : 121.02 From : DENBIGH LAKE RD		LONGITUDINAL WHEEL TRACK	Single and Multiple	2 4
To : 6.6 KM N OF HWY 28			Alligator	2 3
Reg : Eastern Dist Bancroft			Single and Multiple	2 2
	C R		Alligator	
Pavement and Shoulders Distress Comments (Maximum - 255 Characters)	AC	PAVEMENT	Single and Multiple	
Consider Micro or Ultrtathin in future. Cracks are	ĸ	EDGE	Alligator	
	N		Half, Full and Multiple	2 5
	G	TRANSVERSE	Alligator	
		Longitudinal Me	ander and Midlane	2 4
Indexes/Ratios :		Random		
PCI: 76 RCI: 7.57 DMI: 8.05				
PCR : 83 RCR : 7.9 IRI : 1.36				Re-Set All Distress To Zero

Distress Manifestation Index (DMI)

$$DMI = \sum_{i=1}^{15} w_i (s_i + e_i)$$

- i = individual distress types
 W_i = weighting factor of distress (i)
 (0.5 to 3.0)
 S_i = severity of distress (1 to 5)
- $\dot{\mathbf{e}}_{i}$ = extent of distress (1 to 5)

🕅 Ontario

Scale for Severity Rating

 Five (5) severity Levels for AC, PCC and COM type of pavement, ranging from 1 to 5

$$S_{i}(n) = \begin{cases} very Sugnr, n = 1\\ Slight & n = 2\\ Moderate & n = 3\\ Severe & n = 4\\ Very Severe, n = 5 \end{cases}$$

Three (3) severity Levels for ST pavement
 [light n=2]

$$S_{i}(n) = \begin{cases} ngm & n=2\\ Moderate, n=3\\ Severe & n=4 \end{cases}$$

Scale for Density Rating

 Five (5) Density/Extent levels for AC, PCC and COM pavement, in terms of percentage % [0-20%, n=1]

$$D_{i}(n) = \begin{cases} 0 - 20\%, & n = 1 \\ 20 - 40\%, & n = 2 \\ 40 - 60\%, & n = 3 \\ 60 - 80\%, & n = 4 \\ 80 - 100\%, & n = 5 \end{cases}$$

• Three (3) Density/Extent levels for ST pavement $D_i(n) = \begin{cases} 0-20\%, & n=2\\ 20-50\%, & n=3\\ 50-100\%, n=4 \end{cases}$

Goal and Objectives

- The goal is to reduce number of distresses in pavement condition survey at network level
- Examine how individual surface distress contributes to the overall assessment of pavement condition
- Identify and eliminate individual distresses that have minor impacts on DMI
- Provide inputs and technical guidelines for developing and applying automatic data collection technology

Technical Approach

- Identify individual distress' impact/contribution to DMI value
- Eliminate the distresses that have minor impacts on DMI without affecting historic and current pavement condition assessment
- Verify and confirm analysis results by applying additional data and information

Weights of Individual Distresses

Asphalt Concrete Pavement (AC)	Weight (Wi)
Ravelling and Coarse Aggregate Loss	3
Flushing	1.5
Rippling and Shoving	1
Wheel Track Rutting	3
Distortion	3
Longitudinal Wheel Track: Sing. / Multi.	1.5
Longitudinal Wheel Track: Alligator	3
Longitudinal Meandering and Midlane	1
Transverse: Half, Full and Multiple	1
Transverse: Alligator	3
Centreline: Single and Multiple	0.5
Centreline: Alligator	2
Pavement Edge: Single and Multiple	0.5
Pavement Edge: Alligator	1.5
Random/Map	0.5

Portland Cement Concrete	Weight
(PCC)	(W i)
Ravelling and Coarse Aggregate Loss	0.5
Polishing	1.5
Scaling	1.5
Potholing	1
Joint and Crack Spalling	2
Faulting	2.5
Distortion	1
Joint Failure	3
Longitudinal Joint Separation	1
Longitudinal and Meandering Cracking	2
Transverse Joint Creep	0.5
Transverse Cracking	2
Joint Sealant Loss	0.5
Diagonal Corner and Edge Crescent	2.5
"D" Cracking	3

Weights of Individual Distresses (Cont')

Composite Pavement COM	Weight (Wi)
Ravelling and Coarse Aggregate Loss	3
Flushing	1.5
Spalling	2
Tenting/Cupping	2.5
Wheel Track Rutting	3
Joint Failures	3
Distortion and Settlement	1
Longitudinal Meandering (Single & Multiple)	2
Transverse: Single	1
Transverse: Multiple	1
Transverse Joints: Sawed	0.5
Transverse Joints: Reflective	2
Centreline: Single	0.5
Centreline: Multiple	1.5
Diagonal, Corner and Edge Crescent	2.5
Random/Map	0.5

Surface Treated ST	Weight (Wi)
Cover Aggregate Loss	3
Flushing	2
Streaking	1
Potholing	1
Rippling and Shoving	2
Wheel Track Rutting	3
Distortion	3
Longitudinal Cracking	1
Transverse Cracking	0.5
Pavement Edge Break	2
Pavement Edge Cracking	1
Alligator Cracking	3

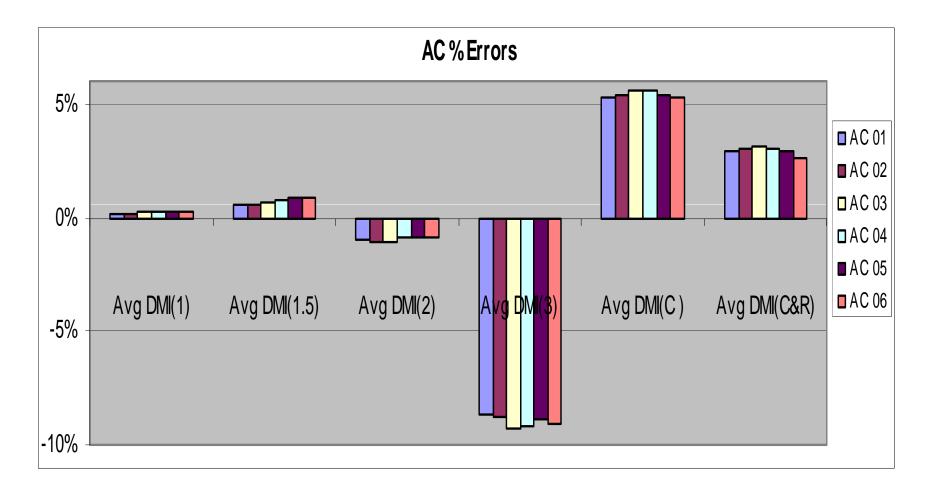
Re-definition of DMI (#)

DMI(#) standards for DMI that is calculated by use of the existing formula but excluding individual distresses that have weight factors lower than #

- DMI(1) contains distresses with weight >=1
- Similar definition for DMI(1.5), DMI(2) and DMI(3)
- DMI(C) and DMI(C&R) include only cracking / cracking & rutting as distresses
- DMI (T) is the original DMI (including all distresses)

Analysis of Re-defined DMI (#)

- Use six years historic data (from 2001 to 2006) extracted form MTO pavement management databases
- DMI (#) were calculated and then compared with the DMI (T) to produce an error percentage
- Note that the sample size varies significantly between the four pavement types:


-1344 AC Sections, 26 PCC Sections, 22 COM Sections, and 271 ST Sections

Results for AC Pavement

	AC 01	err%	AC 02	err%	AC 03	err%	AC 04	err%	AC 05	err%	AC 06	err%	avg err%	avg err %
DMI (T)	8.26		8.24		8.16		8.17		8.1 9		8.19			
Avg DMI(1)	8.27	0.2%	8.26	0.2%	8.18	0.2%	8.19	0.2%	8.2 2	0.3%	8.21	0.2%	0.2%	0.2%
Avg DMI(1.5)	8.31	0.6%	8.29	0.6%	8.22	0.7%	8.23	0.8%	8.2 6	0.9%	8.26	0.9%	0.7%	0.7%
Avg DMI(2)	8.18	- 1.0%	8.15	- 1.1%	8.07	- 1.1%	8.10	- 0.9%	8.1 3	- 0.8%	8.12	-0.9%	-1.0%	1.0%
Avg DMI(3)	7.55	- 8.7%	7.51	- 8.8%	7.40	- 9.3%	7.42	- 9.1%	7.4 6	- 8.9%	7.45	-9.0%	-9.0%	9.0%
Avg DMI(C)	8.70	5.3%	8.68	5.4%	8.61	5.6%	8.63	5.6%	8.6 3	5.4%	8.62	5.3%	5.4%	5.4%
Avg DMI(C&R)	8.50	2.9%	8.49	3.0%	8.41	3.1%	8.42	3.0%	8.4 3	2.9%	8.40	2.6%	2.9%	2.9%

Results for AC Pavements (Cont')

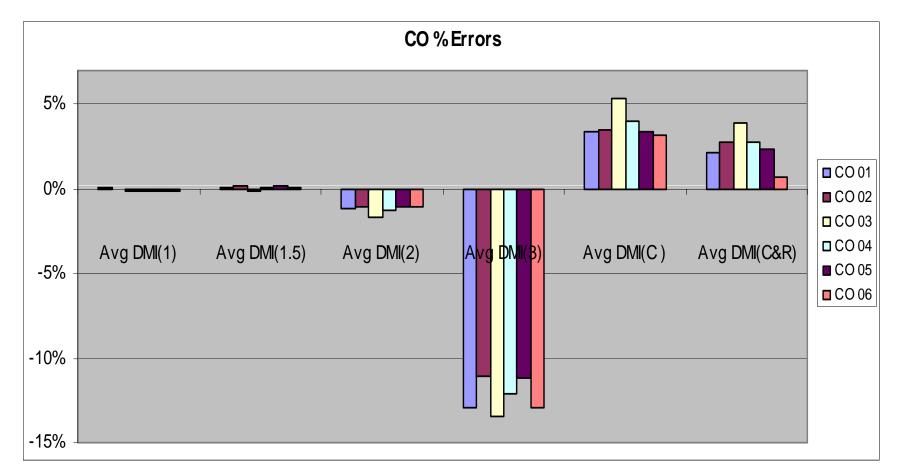


Comparison between errors from each modified DMI (AC)

Results for PCC Pavement

	PC 01	err%	PC 02	err%	PC 03	err%	PC 04	err%	PC 05	err%	PC 06	err%	avg err%	avg err %
T_DMI	7.95		7.65		7.81		8.32		8.16		8.49			
Avg DMI(1)	7.81	-1.8%	7.49	-2.1%	7.68	-1.6%	8.18	-1.6%	8.02	-1.7%	8.37	-1.4%	-1.7%	1.7%
Avg DMI(1.5)	7.78	-2.2%	7.44	-2.6%	7.65	-2.1%	8.20	-1.4%	8.04	-1.5%	8.38	-1.3%	-1.8%	1.8%
Avg DMI(2)	7.74	-2.6%	7.38	-3.4%	7.56	-3.1%	8.12	-2.3%	7.95	-2.6%	8.34	-1.8%	-2.6%	2.6%
Avg DMI(3)	9.24	16.2%	8.85	15.8%	9.03	15.7%	8.83	6.1%	8.84	8.3%	9.17	8.0%	11.7%	11.7%
Avg DMI(C)	7.98	0.5%	7.64	-0.1%	7.65	-2.1%	8.27	-0.5%	7.98	-2.2%	8.35	-1.6%	-1.0%	1.2%

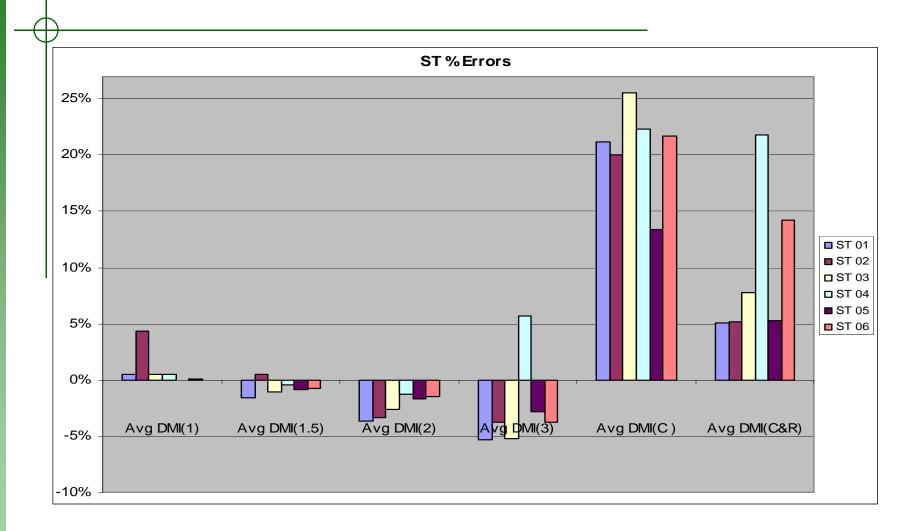
Comparison between errors from each modified DMI (PC)


🕅 Ontario

Results for COM Pavement

								_	-	-	_	_	-	
	CO 01	err%	CO 02	err%	CO 03	err%	CO 04	err%	CO 05	err%	CO 06	err%	avg err%	avg err %
DMI (T)	8.67		8.84		8.70		8.72		8.73		8.55			
Avg DMI(1)	8.68	0.1%	8.83	-0.1%	8.69	-0.1%	8.71	-0.1%	8.71	-0.1%	8.54	-0.1%	-0.1%	0.1%
Avg DMI(1.5)	8.68	0.1%	8.85	0.2%	8.70	-0.1%	8.73	0.1%	8.74	0.2%	8.56	0.1%	0.1%	0.1%
Avg DMI(2)	8.58	-1.1%	8.74	-1.1%	8.56	-1.6%	8.61	-1.3%	8.64	-1.0%	8.46	-1.1%	-1.2%	1.2%
Avg DMI(3)	7.55	- 12.9%	7.86	- 11.0%	7.53	- 13.4%	7.67	- 12.1%	7.75	- 11.2%	7.44	- 13.0%	-12.3%	12.3%
Avg DMI(C)	8.96	3.3%	9.14	3.5%	9.17	5.3%	9.07	4.0%	9.02	3.4%	8.82	3.2%	3.8%	3.8%
Avg DMI(C&R)	8.86	2.1%	9.08	2.8%	9.05	4.0%	8.96	2.7%	8.93	2.3%	8.61	0.7%	2.4%	2.4%

Results for COM Pavement (Cont')


Comparison between errors from each modified DMI (COM)

Results for ST Pavement

	ST 01	err%	ST 02	err%	ST 03	err%	ST 04	err%	ST 05	err%	ST 06	err%	avg err%	avg err %
DMI(T)	4.38		4.66		4.67		4.69		6.74		6.84			
Avg DMI(1)	4.40	0.5%	4.86	4.3%	4.69	0.5%	4.71	0.5%	6.74	0.0%	6.85	0.1%	1.0%	1.0%
Avg DMI(1.5)	4.31	-1.6%	4.68	0.5%	4.62	-1.1%	4.67	-0.4%	6.69	-0.8%	6.80	-0.7%	-0.7%	0.9%
Avg DMI(2)	4.22	-3.7%	4.50	-3.3%	4.55	-2.6%	4.63	-1.3%	6.63	-1.7%	6.74	-1.5%	-2.4%	2.4%
Avg DMI(3)	4.15	-5.3%	4.48	-3.8%	4.42	-5.3%	4.96	5.7%	6.55	-2.8%	6.59	-3.7%	-2.5%	4.4%
Avg DMI(C)	5.31	21.2%	5.59	20.1%	5.86	25.6%	5.73	22.3%	7.65	13.4%	8.33	21.7%	20.7%	20.7%
Avg DMI(C&R)	4.61	5.1%	4.90	5.2%	5.03	7.8%	5.71	21.8%	7.10	5.3%	7.82	14.3%	9.9%	9.9%

Results for ST Pavement (Cont')

🕅 Ontario

Summary and Conclusions

- DMI(2) produces good results for all pavement types, which results in a maximum average deviation from DMI (T) of about 3%
 - maximum magnitude of error in DMI(2) in any year for any type was only 3.7% (ST 2001)
 - maximum average error for a type over the six years was 2.6% (in PCC)

Summary and Conclusions

- Using DMI(2) will result in a reduction of 50% individual distresses currently evaluated
- DMI(C&R) may be considered to replace DMI(T) for AC and COM pavements, particularly where automated data collection is planned
- DMI(3) shows severe deviations from DMI(T) for all pavement types
- DMI(C) shows large variations from DMI (T)

🕅 Ontario

Two-tailed Z test

• The following formula was used:

$$p(value) = 2 * P\left(Z > \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right)$$

- A lower p-value translates to higher confidence that the null hypothesis (no systematic bias exists) needs to be rejected
- A High p-value signifies the deviation of a modified DMI from DMI(T) could have happened naturally

Z-test Results (Cont')

p-value	Interpretation
>10%	No evidence against null hypothesis
5%-10%	Weak evidence against null hypothesis
1%-5%	Some evidence against null hypothesis
0.1%- 1%	Strong evidence against null hypothesis
<0.1%	Very strong evidence against null hypothesis

Z-test Results (Cont')

	AC		PCC		СОМ		ST	
DMI (T)	8.1944		8.1616		8.7273		6.7417	
	011911		011010		017 27 0		017 117	
DMI(1)	8.2160	60.03%	8.0243	38.00%	8.7143	96.76%	6.7427	99.12%
DMI(1.5)	8.2643	9.00%	8.0362	42.26%	8.7404	96.73%	6.6863	54.28%
DMI(2)	8.1254	9.42%	7.9454	16.68%	8.6360	77.53%	6.6298	21.94%
DMI(3)	7.4640	0.00%	8.8352	0.00%	7.7514	0.23%	6.5529	3.83%

Results of 2-tailed z-test, $\sigma = 1.0$

Remaining Distress Components of DMI(2) for AC Pavement

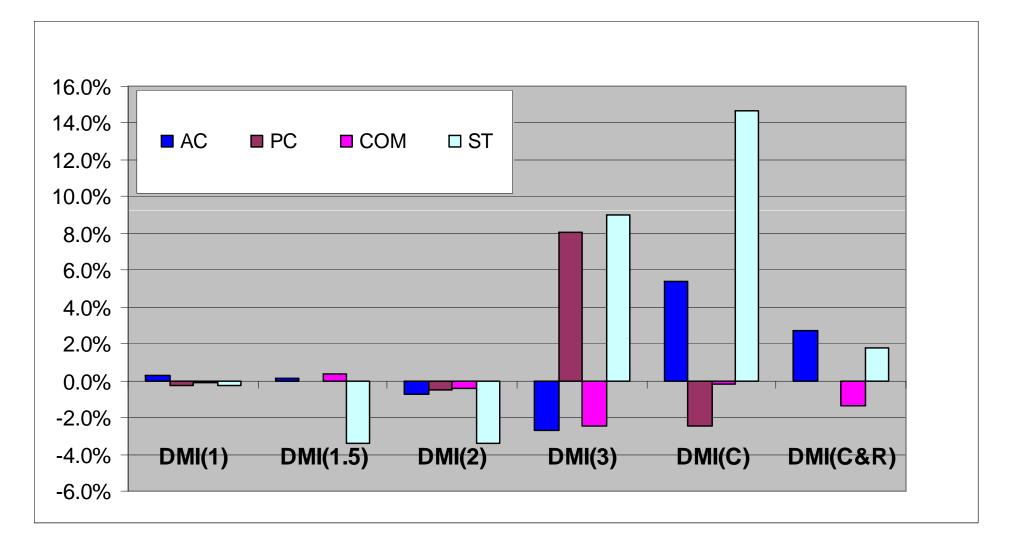
Asphalt Concrete Pavement (AC)	Weight (Wi)		
Ravelling and Coarse Aggregate Loss	3		
Flushing	1.5		
Rippling and Shoving	1		
Wheel Track Rutting	3		
Distortion	3		
Longitudinal Wheel Track: Sing. / Multi.	1.5		
Longitudinal Wheel Track: Alligator	3		
Longitudinal Meandering and Midlane	1		
Transverse: Half, Full and Multiple	1		
Transverse: Alligator	3		
Centreline: Single and Multiple	0.5		
Centreline: Alligator	2		
Pavement Edge: Single and Multiple	0.5		
Pavement Edge: Alligator	1.5		
Random/Map	0.5		

Asphalt Concrete Pavement (AC)	Weight (Wi)	
Ravelling and Coarse Aggregate Loss	3	
Wheel Track Rutting	3	
Distortion	3	
Longitudinal Wheel Track: Alligator	3	
Transverse: Alligator	3	
Centreline: Alligator	2	

Remaining Distress Components of DMI(2) for PCC Pavement

Portland Cement Concrete (PCC)	Weight (Wi)		
Ravelling and Coarse Aggregate Loss	0.5		
Polishing	1.5		
Scaling	1.5		
Potholing	1		
Joint and Crack Spalling	2		
Faulting	2.5		
Distortion	1		
Joint Failure	3		
Longitudinal Joint Separation	1		
Longitudinal and Meandering Cracking	2		
Transverse Joint Creep	0.5		
Transverse Cracking	2		
Joint Sealant Loss	0.5		
Diagonal Corner and Edge Crescent	2.5		
"D" Cracking	3		

Portland Cement Concrete (PCC)	Weight (Wi)		
Joint and Crack Spalling	2		
Faulting	2.5		
Joint Failure	3		
Longitudinal and Meandering Cracking	2		
Transverse Cracking	2		
Diagonal Corner and Edge Crescent	2.5		
"D" Cracking	3		



Verification by Applying 2007 Data

Ψ								
	AC		PCC		СОМ		ST	
	DMI Avg.	Error %	DMI Avg.	Error %	DMI Avg.	Error %	DMI Avg.	Error %
DMI	8.16		8.85		8.72		8.06	
DMI(1)	8.19	0.3%	8.82	-0.3%	8.71	-0.1%	8.04	-0.3%
DMI(1.5)	8.24	0.1%	8.85	0.0%	8.76	0.4%	7.79	-3.4%
DMI(2)	8.10	-0.7%	8.80	-0.5%	8.68	-0.4%	7.79	-3.4%
DMI(3)	7.95	-2.7%	9.56	8.1%	8.50	-2.5%	7.34	9.0%
DMI (C)	8.61	5.4%	8.62	-2.5%	8.70	-0.2%	9.25	14.7%
DMI(C&R)	8.38	2.7%	-	-	8.60	-1.4%	8.21	1.8%

Verification by Applying 2007 Data

Thank You!

Li Ningyuan, P.Eng. Tel: 416-235-3518 Li.Ningyuan@Ontario.ca

