Automated Cracking Survey and Multi-Function Vehicle

Kelvin CP Wang

University of Arkansas & WayLink

kcw@uark.edu

RPUG 2008 Austin, Texas

October 28 2008

Four Parts of Presentation

- Part One: History
- Part Two: Technology Solutions
 - Automation: Data collection and Processing
- Part Three: Cracking Survey
 Comparisons and Variations with
 Protocols
- Part Four: Keys to Protocol Application

Part One

History

UK HARRIS (Highways Agency Road Research Info System)

- Multi-Function
- Automation of Cracking Survey
 - Primarily Image
 Collection
 - Automated Detection and Classification of Cracks: Not in Production

Australian RoadCrack, RTA & CSIRO

Pavement Evaluation (Non-

Structural)

- Roughness: Mature but Different
- Rutting: Point Lasers or 1200 Points on 4-Meter Width
- Right-of-Way Imaging
 - Support Multiple HD 1080P Cameras
 - Ready for Automated Asset Management
- Laser based Pavement Surface Imaging
 - 1-mm Resolution (X & Y), Complete Coverage, High Quality at Any Time
- Automated Cracking Software: the New Frontier

Digital Highway Data Vehicle (DHDV, Last Generation)

The Parallel Computing Approach

New Laser based Illumination

- Same 1-mm Resolution
- Complete Pavement Coverage, 4meter Wide
- Any Weather Condition as long as Dry Pavement
- No Bad Shadow under Any Lighting Condition
- Uniform Image Quality

DHDV with LRIS (# 1, Early 2006)

Part Two

Technology Solutions

DHDV with LRIS (# 8, June 2008)

Recent Delivery, Ohio US

Recent Delivery, Ohio US, 800Watts

Recent Delivery, Ohio US During Data Collection

Workstation for Post-Processing

Grid based SCANNER Method

Software Solution

Automated Distress Analyzer

- Real-time or Post-process

MHIS Deluxe, MHIS Web

ADA-Automated Distress Analyzer

III Automated Distress Analyzer			
Ele RealtimeProc Database View Help			
Source Image		Crack Map	
		<u>Ď</u>	
	n an		
H Information List			
	Q	CrackInfo 🔍 P	rocStatus
Ready	1946 1988 P:171 R:172	Process 00000291	

ADA (Automated Distress Analyzer)

- RAW image: 2048 by 4096 pixels(~1mm/pixel)
- Processing speed: Real-time (60MPH or higher)
- Platform: DHDV & Workstation
- Pavement type: Supports both Asphalt and Concrete
- Result: Crackmap, Crack geometries
- Applicability: User Decision

Performance Measures of Network Level Pavement Surveys

Roughness, Rutting, and Cracking

- Performance Requirements
 - Fully Automated
 - Highway Speed

Simple, Realistic, and without Baggage UK SCANNER UK National Standard Roughness, Rutting, & Cracking Fully Automated Fully Implemented, 2006-Now A Model to Follow by Countries and Territories

Part Three

Cracking Survey Comparisons and Variations with Protocols

Los Angeles, CA, 1st Street, 2007-12-19 (Non-Wheel Path)

Repeatability (SCANNER)

Repeatability (AASHTO)

Variations Between 2 Raters (SCANNER)

Variations Between 2 Raters (AASHTO)

Part Four

Keys to Protocol Application

Ideal Capabilities in Distress Automation (US Practices)

- PCI, cracking & many others
- LTPP, cracking & many others
- AASHTO Interim Protocol
- Cracking:
 - Linear Cracking, Block & Alligator Cracking
 - Wheel-Path Cracking (Load-Associated)
 - Non-Wheel-Path Cracking (Non-Load Associated)

Reality

- Poor Image Acquisition Technologies Until 2006
- Protocol Development for Automation
 - Which is First? Protocol or Technology Maturity?
 - Network Level or Project Level?
 - How to Use the Data for PMS?
 - Are All or Most Influencing Factors under Control for A Particular Protocol?

Reality

- Data Acquisition Technology Has Reached Stability in 2006: First Time Ever
- Network Level or Project Level?
 - Project Level Expectation in Many Cases, Why?
- Application of the Data for PMS?
 - Network Application: Priority
- Are All or Most Influencing Factors under Control for A US Particular Protocol?
 NO

Influencing Factors

- Ground Truth of Crack Measurements
 - Comparability Among Manual Results?
- Accurate Positions of Cracks in Wheel-Path, Possible for Accuracy/Repeatability?
- Classification of Linked Cracks
 - Block or Alligator?
- Severity Levels
 - Width Measurement Accuracy?
- Benchmark for QC
 - Subjective

US Rodeo History from Early 1990's for Automated Cracking Survey

- All Unsuccessful (No Exception)
- All with Complex Protocols
 - □ Longitudinal, Transverse, Block, & Alligator
 - Linear Cracks & Load Associated
 - Severity, Extent, et al
- No Questions Asked by Agencies
 - Do it again next time
 - Continue with current method
 - Some day the vendors will get it right (really?)

The Devil is the Protocol!!!

Need Simple and Controllable Protocol: Ultimate Importance

- Automation Target: Network Level Survey Only
 - Alert for Sections with Distress Problems for Additional Manual or Auto Analysis
- Eliminate or Reduce Influence of Un-Controllable Factors
- Automated Results: Easily Verifiable with Acceptable Variability
 - **Repeatable and Consistent**

Available Protocol Outside US

SCANNER in UK

- Ratio: # of Grids with Cracks Over Total # of Grids
- Simple, Relatively Powerful, Consistent and Objective
- Easily Expandable to Include (1) Load and non-Load Cracking Information by Locating Data on Selected Grids, (2) Severities

Grid based SCANNER Method

Thank You !