■VirginiaTech

VEHICLE TERRAIN PERFORMANCE LABORATORY

Timing is Everything

A software approach for a generalized profilometer

Dr. John B. Ferris

Stephen Chappell

Cameron Rainey

Timing is Everything

WirginiaTech

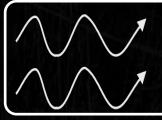
Our Motivation

Systems with integrated sensors can often require very specific processing methods. This can make upgrading and expanding such a system very difficult.

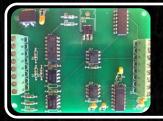
Our Goals

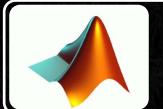
To create a system which is able to easily incorporate new sensors with very little hardware or software modification.

Dr. John B. Ferris Associate Professor



Presentation Outline


WirginiaTech


Laser Profilometer Overview


The Importance of Timing and Synchronization

Hardware Timing and Synchronization

Software Timing and Synchronization

VTPL Laser Profilometers

WirginiaTech

2006

2011 (Current)

Dr. John B. Ferris Associate Professor

Parts of a Laser Profilometer

WirginiaTech

Scanning Lasers

INO LCMS

PSI PPS

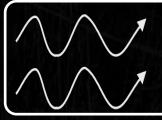
Inertial Measurement Unit

Honeywell HG1700

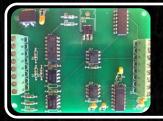
GPS System

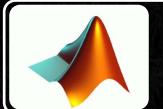
NovAtel SPAN System

GPS Antenna


Dr. John B. Ferris Associate Professor

Presentation Outline

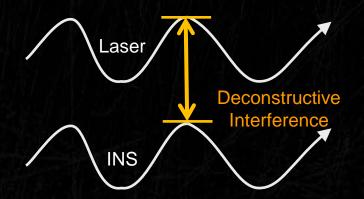

WirginiaTech


Laser Profilometer Overview


The Importance of Timing and Synchronization

Hardware Timing and Synchronization

Software Timing and Synchronization


Synchronizing Laser and INS

VirginiaTech

Consider an example: Vehicle bouncing on flat surface

<u>Unsynchronized</u>

Laser Constructive Interference

Synchronized

Correct Surface Measurement

Incorrect Surface Measurement

Dr. John B. Ferris Associate Professor

Common Timing Issues

VirginiaTech

Clock Timing Mismatch

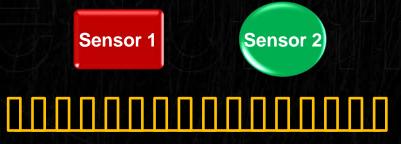

- Sensor 1 believes 16 clock cycles have passed while Sensor 2 believes only 13 clock cycles have passed.
- As time increases, clock timing mismatch increases while accuracy between each sensor decreases.

Dr. John B. Ferris Associate Professor

Common Timing Issues

WirginiaTech

Constant latency between sensors


- Latency between sensors is always constant and time invariant
- Constant error when comparing data between multiple sensors

Common Timing Issues

WirginiaTech

Use ONLY one timing signal for all sensors!

How do we trigger each sensor simultaneously?

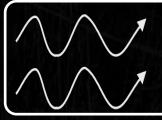
Method 1: Software Triggering

- All sensors must be connect to a common DAQ computer
- Software must be written to simultaneously control each sensor.

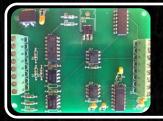
Method 2: Hardware Triggering

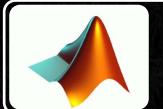
- More robust
- Does not need a common DAQ computer and software to operate.

Dr. John B. Ferris Associate Professor



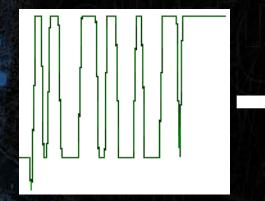
Presentation Outline


WirginiaTech


Laser Profilometer Overview


The Importance of Timing and Synchronization

Hardware Timing and Synchronization


Software Timing and Synchronization

Hardware Triggering Concerns

WirginiaTech

Trigger (switch) Bounce

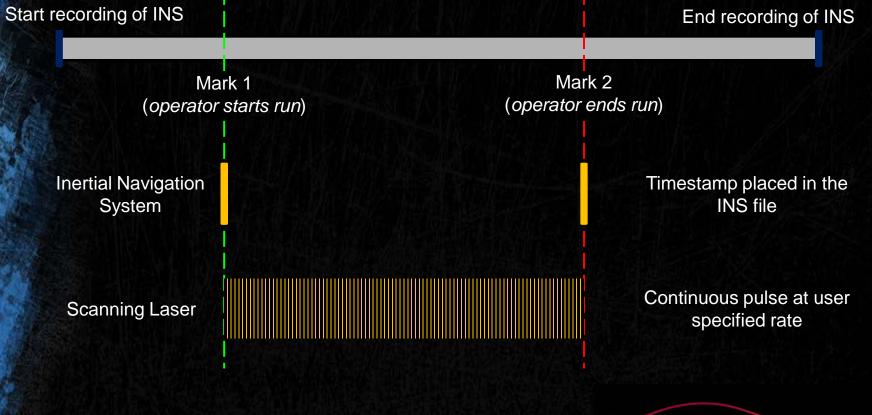
- Will cause each sensor to trigger multiple times.
- Must be Removed!!

Dr. John B. Ferris Associate Professor

RC low pass filtered

- Removes most of switch bounce.
- Leading edge might not rise fast enough
- Different sensors might still trigger at different times!!

Schmitt Trigger

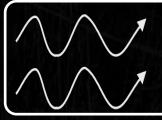

 Clean leading edge signal with high slew rate of 680 Volts per microsecond

Theory - Hardware

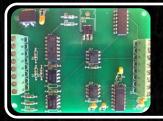
WirginiaTech

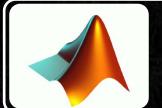
After triggering, different output signals synchronize each piece of equipment

Dr. John B. Ferris Associate Professor



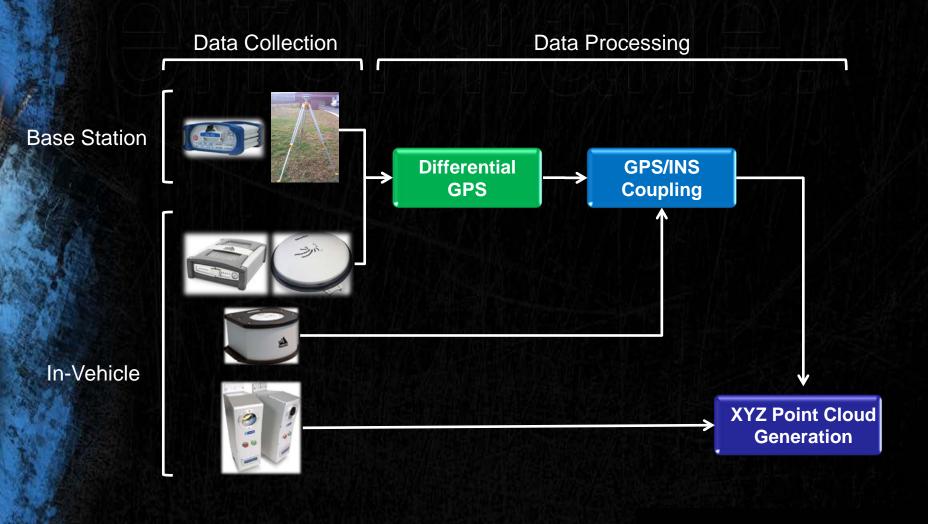
Presentation Outline


WirginiaTech


Laser Profilometer Overview

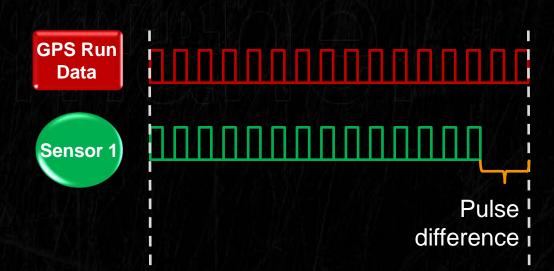
The Importance of Timing and Synchronization

Hardware Timing and Synchronization


Software Timing and Synchronization

How XYZ Data is Generated

VirginiaTech


Dr. John B. Ferris Associate Professor

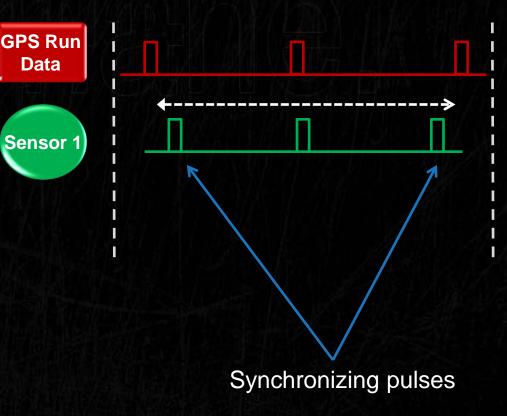
Timing Issues (Pulses)

WirginiaTech

Issues can arise when the length of sensor data is shorter than length of data collection.

Exact time offset of sensor must be determined through testing.

> Dr. John B. Ferris Associate Professor


Timing Issues (Internal Clock)

VirginiaTech

Sometimes internal clocks are used for synchronizing

Time differences between clocks can be problematic.

Using time scaling can correct for the difference in internal clocks.

Dr. John B. Ferris Associate Professor

How Does It Work?

GPS Data

Location Data
Angular Orientation Data
GPS Time Data

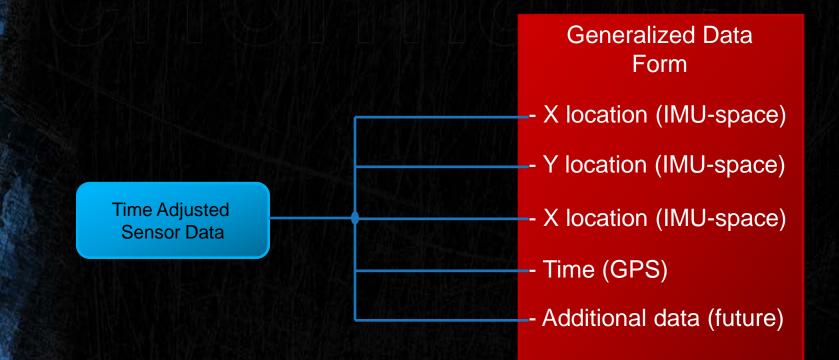
Sensor Data

Measurements collected from sensor
Timing data

External clock
signal
Internal clock

Time Adjusted Sensor Data Measurements collected from sensorTime Data (GPS Time)

Dr. John B. Ferris Associate Professor


www.me.vt.edu/VTPL

VirginiaTech

Generalized Form of Data

WirginiaTech

Dr. John B. Ferris Associate Professor

General Data Processing Overview

•Data in IMU-Space with GPS timestamps

Generalized Sensor then Translated to locate it in GPS space.
Sensor Data is then rotated to remove body roll

•Output is then placed back in the generalized Sensor Data format but now the locations are in Globalspace.

WirginiaTech

Generalized Sensor Data (IMU space)

GPS Translation and Body Roll Removal

Generalized Sensor Data (Global-space)

Dr. John B. Ferris Associate Professor

Summary

WirginiaTech

Hardware:

- Designed to allow for simultaneous triggering of many different types of systems
- Modular, expandable, and robust
 Software:
- Processing flow does not need to be modified for new sensors
- Very little new code is needed when system is expanded

Thank you!

WirginiaTech

Questions and Comments?

Dr. John B. Ferris Associate Professor

Vehicle Terrain Performance Laboratory