

Rutting as a Performance Indicator

Amy Simpson, Ph.D., P.E. Gonzalo Rada, Ph.D., P.E. Beth Visintine, Ph.D. Jonathan Groeger

- Moving Ahead for Progress in the 21st Century
- First "long-term" highway authorization since 2005 (10 extensions to SAFETEA-LU)
- \$105 billion for FYs 2013 and 2014
- Performance-based management of national highway system
- Performance measures established 18 months after enactment
- Prior to enactment, FHWA undertook study, "Improving FHWA's Ability to Assess Highway Infrastructure Health"

- Define a consistent and reliable method to document infrastructure health
 - -Focus on pavements and bridges
 - -Initial focus on IHS, but with possible expansion to NHS
- Develop tools to provide FHWA and State DOTs ready access to key information

- Track #1 Develop an approach for categorizing pavement and bridges as Good / Fair / Poor, that can be used consistently across the country.
- Track #2 Develop an approach for assessing the Overall Health of a multi-state highway corridor.

- Validate IRI as a Tier 1 measure
- Advance potential Tier 2 and Tier 3 measures
- Key questions
 - -Do different data sources tell us the same thing?
 - –Do different metrics help us better understand pavement conditions?

Goal Area	Tier 1	Tier 2	Tier 3
Pavement Preservation	IRI	Functional condition based on Tier 1 plus HPMS distress data	

Defining Good / Fair / Poor

	Condition	Typical Work Required
Good	 Free of significant defects Condition does not adversely affect performance 	 Activities that preserve good conditions (i.e. pavement surface treatments, deck sealing)
Fair	 Minor deterioration on primary structural bridge elements Isolated surface defects or functional deficiencies on pavements 	 Minor rehabilitation Bridge crack sealing, patching of spalls, and corrosion mitigation Pavement overlays and patching
Poor	 Advanced deterioration Conditions impact structural capacity 	 Structural repairs, major rehabilitation, reconstruction, or replacement

Pilot Study Corridor

National Data - HPMS data in 2010+ format

- State Data
 - -Documentation
 - -Inventory
 - -Pavement Management
- Field data
 - -Collected in eastbound direction only
 - -Rutting, roughness, cracking, faulting
 - -Rolling wheel deflectometer

Pilot Study Data

- IRI is feasible for use as a Tier 1 G/F/P Ride Quality indicator
 - -Reasonable correlation between sources
 - -Make sure data collection/processing consistent
- IRI does not provide complete picture, other measures require additional work
- Additional work performed to investigate bias observed in rutting and identify improvements in HPMS data

Minnesota

- Data Collection Recommendations
- Data Processing Recommendations
- Data Quality Control
- Data Storage Recommendations
- Condition Rating

Equipment

Transverse Spacing

Longitudinal Sampling Interval

Longitudinal Sampling Interval

- AASHTO PP70-10: Width should cover at least 13 ft
- Maximum spacing between data points of 0.4 inch
- Maximum spacing between profiles of 10 ft

Profile Filtering – Moving Average

Reference Line

Gage Width

- 2-inch moving average filter applied to transverse profile
- Use lane width wireline reference
- Gage width from 1.2 to 1.5 inches

- Initial system validation reviewing each component
- Routine checks of components, AASHTO PP70-10
- Systematic reviews of collected data

Base Length

- Data Elements
 - Average, minimum, maximum, and standard deviation of rut depth
 - Cross-slope
- Base length of 0.1-mile
- Metadata stored should include the full transverse profile
- Quality control elements identifying level of review

Condition	Distress Range	Percentage of Corridor
Good	Rut < 0.25 inch	96%
Fair	0.25 inch \leq Rut \leq 0.4 inch	3%
Poor	Rut > 0.4 inch	1%

- FHWA Pavement Health Track (PHT) identifies terminal rut of 0.4
- AASHTO ME identifies rut < 0.25 as adequate and rut > 0.4 as inadequate

Field Validation

- 20 segments reviewed within MN
 - -7 Good
 - -7 Fair
 - -6 Poor
- 71% agreement between condition rating
- Based on field validation, threshold values remain as preliminary until further research completed

- FHWA Office of Asset Management
- Pilot States SD, MN, WI <u>thank you</u>!
- Technical Working Group WA, SD, NC, VA, MO, WI, FHWA
- 2nd TWG CT, KS, NC, OH, RI, FHWA, 2 Academia, 1 Consultant
- Study Team
 - AMEC Environment & Infrastructure, Inc.
 - Cambridge Systematics, Inc.
- Data Collection Vendors
 - Mandli Communications (pavement)
 - Applied Research Associates, Inc. (RWD)
- Googe: FHWA Infrastructure Health Pilot Study or FHWA Asset
 Management Publications